
00
NAVAL POSTGRADUATE SCHOOL

Monterey, California
N

mI DEC261989

THESIS

AN AUTONOMOUS

PLATFORM SIMULATOR (APS

b\'

Larry R. Shannon and William A. Teter

June 1989

Thesis Advisor: Robert B. McGhee

Approved for public release; distribution is unlimited

314 ,oo n e e<ait '

wit. ll be



Unclassifiled
Security Classification of this a 'c

REPORT DOCUMENTATION PAGE
I&Rpr euiyClassification lb ReS~ri.te Marmlnies
laReor ecriyUNCLASSIFIED I____________________

2a Security Classification Authority 3 Distti~on A' 1iloi:t of Report

I 2b Declassification/Downmgrading Schedule Approved for public release-, distribution is unlimriited.

4 Performing Organization Rcport Number(s) 5 Monitoring Organizatijn Report Numberts)

6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organiztion

Naval Postgraduate School 52 Naval Post (-rad Late School
6c Address (city, satle, and .71P code) 7b Address rcit ' y.Nuiae. a~nd ZIP code)

Monterey, CA 93943-5000 Nlonterev. CA 93943-5000
8a Name of Funding /pon sormg Organization 8b Office Symbol 9 Procurement Instrumnent. Identification Number

8c Address (city, sta:e, and ZIP code)
\zc z-N" Tas No V.ori Un- Aczcucri.o

I11 Title (Iniclude Sec tr i., ijctin

AN AUTONOMOUS PLATFORM SIMLULATOR (APS)
12 Personal Author(s)

Larr, R. Shannon anid William A. Teter
13a Type of Report 1 3b Time Covered 1 4 Da~c o! Rcp.'rt' yeur. :nr.e,1 Page Count

Master's Thesi rmT Ju'ne 1 9 9 Ze
16 Supplementary Notat~on

14 The views expressed in this thesis are those of the authors anid do niot reflect the officilal policy or position of
the Department of Defense or the -(-.S. Government.

1 7 Cosau Codes, 18 Suoieci Term~s (.cj.kut: on rcer.se riccL.%sr, anid bh~nxg :a ~ 'rnbcr,

Fie14 subroup M Noving Platform SlMLulators,-v'iSUa1 Simulators. Real-Time Graphics,
I istribut~d Pro~cessi'nL. Line-of- Siuht, Rel-Tme P"'01 Plunin

19 Abtrct(cn1~ueonreerc f nc's' nd id nzify~ by b'ock number '._.K

The development of an intelligent autonomous vehicle, that can perform high risk riis, ions or operate in
environments too hazardous for humans. hbeen a long standing quest of the i1,itairy c muity. The
Autonomous Platform Simulator (APS) uses the flexibiliy and po~k er of realistic graphical simu'ationi to provide a
low cost testbed for the study' of real1-time path planrning alorithn anid contirol straitecies wihout thiecommitment
of resources involved in building a prototype sylstem. It is a brdge between the theoretical study, of an abstract Al
path planning problem and applied research, producing concrete performance measurements under realistic
conditions.

APS consists of one or more vehicle simulators, each implemented on a Silicon Graphics IRIS/4D-7OGT
graphics workstation. One vehicle simulator is linked with an Al agent path planner, implemented on a pair oa
Symnbolics Al workstations using the Aut,)mated Reas-oning Tool development shell.

System tils demonstrated that APS was able to achive real-time path planning and guidance of a realistically
depicted~~~~~~ grudvhcenvgtn sn igitized data of actual terrain. Communication bottlenecks currently

limnit the ability to make direct conripanisoris betw~een human and machine control, but the system holds promise to
k, fill the gap as a pre-prototvpe aulonomnous platform simulator.

' Prof. Rober B. M4cGhee 08 4-49Cd 2i
DD FORM 1473. 84 MAR 10 APR edition may be used until e~haisicd scL C;Tlt\ classtttcation of his page

All other editions are obsole~e Unclassified



Approved for public release. distribution is unlimited.

AN AUTONOMOUS
PLATFORMI SIMULATOR (APS)

by

Larry Richard Shannon
Captain. United States Marine Corps
B.S., University of Washington, 1981

and

William Albert Teter
Major. United States Armn

MI.M.A.S., U.S. Army Command & General Staff College. 1986

Submitted in partial fulfillment of the
requirements foi the degiee of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

Authors:, /,

zG{J Lar7-Rihud-

Williami A-1bert Teter
Appro',.ed Bv:A

Michae l-d . -econd Reader

Robert B. McGhee. Chairman.
Department of Computer Science

Dean of Infoninat ion and Policy Sciences



ABSTRACT

The development of an intelligent autonomous vehicle that can perform high risk

missions or operate in environments too hazardous for humans has been a long

standing quest of the military community. The Autonomous Platform Simulator

(APS) uses the flexibility and power of realistic graphical simulation to provide a low

cost testbed for the study of real-time path planning algorithms and control strategies

without the commitment of resources involved in building a prototype system. It is a

bridge between the theoretical study of an abstract Al path planning problem and

applied research, producing concrete performance measurement inrider realiqtic"

conditions.

APS consists of one or more v,_.:cle simulators, each implemented on a Silicon

Graphics IRIS/4D-70GT graphics workstation. One vehicle simulator is linked ,ith

an Al agent path planner, implemented on a pair of Symbolics Al workstations using

the Automated Reasoning Tool development shell.

System trials demonstrated that APS was able to achieve real-time path planning

and guidance of a realistically depicted ground vehicle navigating using digitized data

of actual terrain. Communication bottlenecks currently limit the ability to make direct

comparisons between human and machine control but the system holds promise to fill

the gap as a pre-prototype autonomous platform simulator.

NTIS ."' V
DT N- . :

Sly .

iiiDi
D.--



TABLE OF CONTENTS

IN T R O D U C T IO N ............................................................................................ 1

A . PRO BLEM STA TEM ENT ................................................................... 1

B. THESIS ORGANIZATION ............................................................. 2

II B A C K G R O U N D ........................................................................................... 4

A. VEHICLE SIMULATORS ............................................................... 4

B. AUTONOMOUS VEHICLES ........................................................... 7

C . PA TH PLA N NIN G ........................................................................... 8

D . EX PERT SY STEM SH ELLS ............................................................. 11

E. CO M M U N ICATIO N S ................................................................... 12

F. DEVELOPMENT SYSTEM DESCRIPTION ............................... 13

1. IR IS G raphics System .. ..................................................... 13

a. SGI IRIS/4D-70GT Graphics Workstation
D escrip tio n ............................................................. . . 13

b. Softw are ......... ...... .............................................. . . 13

2. S Y M B O L IC S ............................................................ ..... . . 14

a. Sym bolics 3600 ...................................................... 14

b. S o ftw are ............................................................... . . 14

3 . N etwko rk .............................................................................. . . 14

III. METHODOLOGY AND ASSUMPTIONS ............................................... 16

A . D E FIN IT IO N S ................................................................................ 16

B. VEHICLE SIMULATOR ............................................................... 16

1. A ssum ptions ....................................................................... . . 17

2. C oordinate System s ............................................................. 17

3. Platform Rotation Angles ................................................... 18

4. Coordinate System Transformations ....................................... 19

iv



5. Physics of M otion .............................................................. 21

a. Friction and Coasting .................................................. 22

b. Braking .................................................................... 24

c. Acceleration ............................................................. 24

d. Slope Calculations ................................................. 25

e. Effects of Slope ...................................................... 26

f. Suspension Oscillation - "Bounce ........................ 27

6. Simulation Time Interval .................................................... 29

7 P ath s .................................................................................. .. 30

8. Guidance States .................................................................... 33

9 . A uto p ilo t ........................................................................... .. 35

C. PATH PLANNING ......................................................................... 36

D. AUTONOMOUS vice MANUAL CONTROL .............................. 44

E. COM M UNICATIONS ................................................................... 47

F. PERFORMANCE MEASURES .............................. 50

G. SUMM ARY .................................................................................... 51

IV. SYSTEM DESCRIPTION ........................................................................... 52

A. TERRAIN DATABASE .................................................................. 52

B. VEHICLE SIM ULATOR ............................................................... 53

1. Capabilities .................................. 53

2. APS Environment ............................................................... 54

3. Graphics Drawing Cycle .................................................... 55

4 . In p u t .................................................................................. .. 5 5

5. M odel Update ....................................................................... 57

6. Platform Position and Viewing Parameter Update .............. 58

7. Network Communications ................................................. 59



8. Sim ulation T im e ................................................................. 64

9. Simulating Weapon Systems ............................................... 64

10. Module Descriptions ........................................................... 69

a. Program Control Flow ............................................. 69

b. Supporting Routines ............................................... 69

c. D ata Structures ......................................................... 69

d. Turning/Steering Module ......................................... 69

e. V elocity M od . ...................................................... 70

f. Bounce Module ...................................................... 70

g. M ath M odule ........................................................... 7 1

h. Path Operations Menu ............................................. 71

i. P ath M odule ........................................................... 72

j. A utopilot M odule .................................................... 73

C. RULE-BASED PATH PLANNER ........................... 73

D . S U M M A R Y .................................................................................. . . 79

V. SIMULATION RESULTS ........................................................................ 80

A. VEHICLE SIMULTOR .................................................................. 80

B . P L A N N E R .................................................................................... . . 8 1

C. COMBINED SYSTEM ................................................................. 82

VI. SUMMARY AND CONCLUSIONS ........................................................ 84

A . L IM IT A T IO N S ................................................................................ 84

B. AREAS FOR FURTHER STUDY ................................................. 84

C . SU M M A R Y .................................................................................... 89

APPENDIX A VEHICLE SIMULATOR MODULE DESCRIPTIONS .............. 90

APPENDIX B PATH PLANNER CODE .............................................................. 123

APPENDIX C USER INTERFACE ........................................................................ 167

vi



APPENDIX D DATA COLLECTION FORM ........................................................ 186

A PPEN D IX E K N O W N B U G S .............................................................................. 187

L IST O F R E FE R E N C E S .......................................................................................... 189

IN ITIA L D ISTR IBU T IO N LIST ............................................................................. 193

"ii



AC KNOWLEDG EMENTS

We take this opportunity to thank the people who provided assistance or in-

spiration. We thank Professor Robert McGhee for getting us started, keeping us go-

ing, and serving as referee. Bill Breden for providing the code to run Profe.,sor

Kwak's wavefront search program with terrain slope data developed by Dennis Fel-

hoelter. Professor Kwak provided invaluable help with the communications and wave-

front search programs, for which he wrote the original code. Professor Michael Zyda

for letting us follow in his wake as he pushed the leading edge of real-time computer

graphics. Mark Christian for his realistic Cobra helicopter. John Yurchak, a program-

mer's programmer, for patiently leading us through the labvinthine world of C and

UNIX. We thank our fellow students, for the daily stimulus of working along side

bright, innovative people, never too enamored of their own projects to stop and lend a

hand.

Ron Ross spent untold hours explaining some of the fine points of path plan-

ning. and terrain representation. For his time, effort. and expertise ve are thankful.

We especially thank Albert Wong and the rest of the Fechnical Support Staff.

Computer Science Department, Naval Postgraduate School for their help in under-

standing the workings of the department computer systems.

Finally, we thank our families for providing s.,pport and understanding and

keeping us nurtured %ith hope.

viii



I. INTRODUCTION

A. PROBLEM STATEMENT

The development of a truly autonomous vehicle is a long sought after goal

[DODSCI83, WEISN&89]. The more autonomy and intelligence such a vehicle has,

the more it can replace humans for the performance of hazardous, strenuous, or repeti-

tive tasks. Research in autonomous vehicles has largely focused on the development

of control systems that totally replace human direction and move human interaction to

higher levels of generalization and abstraction. Yet no broad comparison has been

done of the performance of a human operator with varving levels of automated sup-

port, versus purely autonomous control. The objective of this research is to create an

Autonomous Platfom Simulator APS) in ordcr t- provide a facili:\ for sch comj.-

sons. Performance measuremcn. taken under ,arvin% ' comhinau on. of human and

Al agent control over a simulated vehicle navigating a tactical cross-country route.

provide the yardstick to compare the studied modes of operation.

One of the major tasks that an autonomous vehicle must perform is to p!an a

path to reach its goal and then navigate along that path. There are many aorithms

for calcula:ing planning) an optimnal path based on some traversal cost cnitera

[RICHDG{X7 contains an excellent suivey of path planning methods]. In the

construction of an autonomous vciucle prototype, one methodology is usually choen

and then frozen by the investment in the implementation. Another aim of the APS

system is to provide a means for comparing the performance of path planning

algorithms in a practical setting using real world terrain data. The replacement of an

actual vehicle with a realistic graphical simulation is desirable for this research

because different algorithms, hybrid control configurations, and other teatures can be

studied without the cost of building a physical system, the risk of damage to an actual

vehicle, or the risk of injury to a human driver. For this research effort, the physical
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vehicle and its onboard navigation and control systems are simulated on a Silicon

Graphics IRIS '-D-7OGT graphics workstation.

T, ,ie APS system the simulated vehicle navigates along a pre-determined path

to'vard a known goal. The path is produced by either an Al agent or a human planner

from global terrain data, such as a map. which does not contain the location of obsta-

cles, such as minefields, which may force a deviation from the original path. Various

performance measures are monitored to evaluate different combinations of autonomous

and human control. The AI agent planner is implemented on a dedicated Al worksta-

tion, a Symbolics 3650. The expert system shell used in this study is ART. produc.ed

by Inference Corporation [INFRNC85].

In developing an autonomous vehicle simulation with ,electable mode, of vehi-

cle control and path planning, four distinct modes of operation are inplementcd :hara,:-

terzed by , hether a huenan operator or .41 agent is perfomiing the funtion. The f, nr

combinations studied are:

I - Human path planning and a human driver.

2 - Human path planning NAitii an autopilot capable of follow ing the calculitIed path

3 - Path planning by an expert system with a human driver controlling the vehicle

based on received path points.

4 - Total aILutonomous (hands-off) control.

The hier"rchv involved in these tasks recognizes another lc,l aNoe the '"o (-I

far discussed, that of mission planning, which designates the vehicle's final objective or

goal point of the path. In APS, the output of the mission planning process is considered

a given and is always entered by the human commander.

B. THESIS ORGANIZATION

The work done in this thesis breaks down into two major areas: vehicle simula-

tion and path planning. Work done in the vehicle simulation arena was performed by,



Teter. Work done in the path planning arena was performed by Shannon. The ,,rnn:u-

nications work was completed by both authors.

Chapter II contains an overview of previous work done in path planning, communi-

cations, and real-time vehicle simulation that relate to this stud,,. Chapter III cn-

tains a detailed discussion of the development of the algorithms and simulator

software developed during this study. This chapter also covers the simulator vehicle

environment, the characteristics that allow the simulated vehicle to react realisti,:ally.

and detailed discussions of path planning algorithms. Chapter IV contains discus-

sions on the final system implementation. Chapter V examines the final APS s\Ntem.

Finally, Chapter VI contains the authors' views regarding the iimitation of thi, K d,

and possible areas for future research.



H. BACKGROUND

This chapter provides a sur.,ev of previous work in graphical vehicle simulators

and path planning with special emphasis on research done at the Naval Postgraduate

School that laid the foundation for the APS project.

A. VEHICLE SIMULATORS

The vehicle simulator component of the APS system evolved ou of an effo-t to

enhance the Moving Platform Simulator (MPS) [FICHTN&88], a real-time visual

simulation of the Fiber Optically Guided Missile (FOGM), ground vehicles, and three

dimensional terrain, which was itself the result of a continuing series of real-time

visual simulations of ground, sea, and air platforms constructed by students at the

Naval Postgraduate School [OLIVER&87. SMIIIHD&87, MCNKLE&88,

WINN&89].

APS was first implemented using the Firing Platform Simulator, FPS, a close

cousin of MPS. FPS was a class project which added multiple independent views and

ground vehicles that could engage each other with weapons systems. Since NIPS is

the direct ancestor of both APS and FPS, its description provides an understanding of

the context upon which the vehicle simulator was built.

1. The Moving Platfrm Simulator

The Moving Platform Simulator [FICHTN&88] was developed at the Na-

val Postgraduate Schcxl on a Silicon Graphics, Inc. IRIS 4D/70-GT graphics worksta-

tion. NIPS allows a user to select a view from either a ground vehicle or FOGM

missile and guide the platform over a three-dimensional view of a l0xl0 kilometer ar-

ea of Fort Hunter-Liggett, California. The FOGM missile i: able to target. track, and

destroy vehicles on the ground. The elevation data for the simulation was provided by

the U. S. Army's Combat Developments Experimentation Center (CDEC) at Fort

Ord, California. NIPS accepts standard digital map data for other areas of the world.
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Ground vehicles in WPS are controlled by dials on a peripheral input de-

vice. Control response is immediate. Changes in vehicle course and speed, for exam-

ple, are effective during the next display cycle, making them essentially

instantaneous. The maior portions of MPS adopted unchanged for APS are the dis-

play routines, terrain representation, window manager interface, FOGM modeling,

and the overall program structure.

2. The Firing Platform Simulator

The Firing Platform Simulator was a class project that enhanced the

ground platform capabilities in MPS by adding a more realistic image of a tank

(Figure 2-1), multiple independent viewing axes. and engagement between -round

vehicle weapon systems. A set of driver's controls were added using a mouse to let

the user manipulate the throttle, brakes, and steering.

3. Vehicle Motion Modeling

Realistically simulating the response of vehicles to controls, such as

throttle and steering, and to changes in the terrain, is often neglected in a graphical

simulation because a complete model of the physics of motion would be both

analytically complex and computationally expensive. Complete modeling of the

mechanics of vehicle motion is a complex proposal [BARNAC64]. Much of the

mrnxeiing effort of engineers has therefore focused on analyzing a smaller subproblem

such as the characteristics of a vehicle subsystem like the steering or suspension.

Past work at NPS, such as that of Tan [TAN86], has studied various control

algorithms for an autonomous vehicle following a curving road at constant velocity. In

Tan's study vehicle mechanics were modeled by numerically integrating second order

equations of motion for an idealized point mass. Numerical integration provides for

accurate answers to vehicle motion equations, but at the cost of extensive

computation. The modeling requirements of APS are both more general and more

constrained: more general in realistically modeling the effects of control inputs and the
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Figure 2-1 Depiction of Ml Tank
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effects of vehicle interaction witl- varying terrain - more constrained by not being able

to afford an increase in the computational burden from modeling because of the effect

on overall performance.

Real-time graphical moving platform simulations often consume most of

the computing resources of a graphics system in realistically depicting terrain and ve-

hicles [FICHTN&88: !g 72]. Many graphics researchers shy away from more realis-

tically modeling of the effects of steering and terrain in the belief that the problem is

too hard and the necessary code would be too slow. What is sought for APS is a sim-

plified model of vehicle motion and control response designed for a class of ground
platforms moving off-road across varying terrain. An interesting candidate vehicle

model was developed by Ross at NPS [ROSS89]. Ross's work provided a thorough

but computationally simple model of vehicle-terrain interaction and energy costs

while traversing varied terrain regions. Unfortunately', his model's assumption of con-

stant velocity and its requirement for homogeneous terrain patches make it unsuitable

as a basis for the APS vehicle simulator. However, his xork has great potential as

an alternate cost function for path planning.

B. AUTONOMOUS VEHICLES

Research in autonomous vehicles received great impetus in recent y'ears from

DoD's Strategic Computing Initiative [DODSCI831 which called for a push of
"machine intelligence technology" in applied research. One of its three demonstration

projects is the Autonomous Land Vehicle program. Much of the work generated on

autonomous vehicles has focused on vision systems, local obstacle avoidance, such

as FMC Corporation's Autonomous Vehicle [NITAO&88], and road following

guidance, such as Martin Marietta's ALV [LOWRIE85]. Since APS doesn't have

local obstacles to avoid or roads to follow, such research, while stimulating, lacks

direct applicability. The autonomous vehicle prototypes do, however, provide insight

into the functional decomposition of the problem of autonomous vehicle navigation and
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control. For example, both autonomous vehicles mentioned above separate path

planning from vehicle navigation and control, to the extent of having different

hardware perform those functions.

The most productive source of techniques for modeling vehicle motion and

response turned out to be basic physics texts such as Marion's Classical Dynamics

[MARION70] or the late Richard Feynman's Physics Lecture Series [FEYN"MN63].

Robotics applications [FRANK69] also provide some usable techniques. Starting

then, from the solid ground of physics, albeit with several simplifying assumptions,

the iterative nature of the graphics drawing loop can be used to break vehicle motion

into small enough increments so that all equations of motion can be modeled with

functions of no higher than first order terms and without numeric integation. More on

this topic is presented in Chapter III.

C. PATH PLANNING

The task of planning a path across a known region has been classified as a

weighted-region problem [RICHBG87: pg 15]. The weighted-region problem requires

finding the optimal-cost path between two known points given an appropriate area-

cost map. The area-cost map is described as a two dimensional region that is divided

into sub-regions containing a value of traversal for each sub-region. Solving the

weighted-region problem requires searching this two dimensional region. There are

many strategies that can be applied to this problem of path planning. Each strategy

has unique characteristics that determine its suitability. Two areas that have a major

impact on path planning are terrain representation and search methods.

1. Terrain Representation

Natural terrain is generally not discrete nor clearly defined by regular

boundaries. A variety of terrain models are used to depict natural terrain. The choice

of terrain representation affects the choice of the search method used, and conversely
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the choice of a particular search method limits the terrain representations that can be

used.

a. Cartesian Grids

Regular geometric grids a-e used to divide the terrain into small regu-

lar cells that are used to classify some aspect of the terrain. In work done by Felhoe-

Iter, [FELHOE88: pg 36-37) slope data derived from a DMA source file of Fort

Hunter-Liggett is used to classify each cell of the region. A wavefront search method

can then applied to this type of region representation to find the optimal path between

two points [ROWE&88: pg 2].

b. Hierarchical Models

A hierarchical terrain representation, as used by Metea and Tsai

[METEA&87], is a variation of the Cartesian method used above, and is used to di-

vide terrain into increasingly fine geometric grid cells. The lowest level contains the

highest resolution data. Each cell within a level contains a single number that is asso-

ciated with the cost of traversal. At the lowest level, this number is normally a direct

representation of some aspect of the patch of terrain represented. At each succeeding

level, the values of the cells of the preceding level that are contained in a cell of the

next level are used to calculate the value of that cell.

Alternative forms of hierarchical terrain representation [KUAN84,

ROSS89] move away from the Cartesian grid representation. These models group re-

gions from a lower level that have similar representational value into larger regions at

succeeding levels. The salient point of this approach is that hierarchical terrain mod-

els group terrain information from a lower level into larger regions at higher levels.

c. Homogeneous Model

Homogeneous terrain representation [ROSS89] groups contiguous

points, with identical costs of traversal, within an arbitrary convex polygon. The ho-

mogeneous terrain model allows large areas of terrain to be grouped and stored effi-

ciently in the t'-rrain data base. It also removes the directional biases imposed on the

9



terrain by Cartesian terrain models. This representation is required for certain types

of path planning techniques. One such technique involving Snell's law uses the princi-

ples of optics to find paths across homogeneous regions[ROWE87, ROWE&88].

2. SEARCH METHODS

The backbone of any path planner is the search algorithm used. The choice

of which search algorithm to use is based on many factors. One key factor already dis-

cussed above is the terrain representation used. The following search methods are

discussed briefly with emphasis on the impact of the choice of terrain model.

a. Wavefront

Wavefront planning needs a terrain model that divides the search ar-

ea into uniformly sized cells, typically Cartesian grid cells, where each cell contains

its cost of traversal. This technique uses a modified breadth first search where ex-

pansion is accomplished according to the cost of traversing a cell instead of simply ex-

panding from one level of cells to another [RICHBG871. Disadvantages to this

approach are as follows:

(1) The terrain is cut up into uniform pieces no matter what the

lay of the land is. This is of concern because the resolution of the search region is a di-

rect reflection of the resolution of the cells that make up the search region.

(2) The wavefront algorithm investigated in this thesis expands

to the 8 neighbors of a square grid cell, causing motion to be restricted to straight

lines, in the vertical, horizontal, and diagonal directions, between a cells.

(3) Finally there is a certain amount of waste associated with

the propagation of a wave. The entire wave must be expanded instead of just follow-

ing the most likely path. This same problem of an ever expanding agenda is associat-

ed vith a pure breadth first search.

The major advantages of this algorithm are that it is guaranteed to

find the optimal path and it is well understood.
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b. Depth-First

A depth-first search is used by Goodpasture [GOODPA87] to pro-

vide motion planning for a computer simulation of an autonomous walking machine.

The depth-first search algorithm is guaranteed to provide a path if one exists. It how-

ever, does not guarantee finding an optimal path. The first path found is the path cho-

sen. The algorithm used simply explores neighboring nodes Ciat have not been

explored or are no: obstacles. A node is chosen that is closest to the goal. This strat-

egy is followed until the goal is reachied or the trail ends. If the trail ends, the algo-

rithm backtracks the path, marking the used nodes as obstacles, until it finds an

une-:plnred node to follow. If an unexplored node is found the search is continued as

before. If the start point is returned to, and no unexplored nodes are available, the

search fails. That is, no path is possible. The depth-first search is best used where

"o .no- o" terrain features are used.

c. A Star (A*)

The A* search combined with Snell's law is used to solve long range

path planning problems, where the terrain is divided into homogeneous-cost regions.

Variations of Snell's law are used to find possible paths to the goal, across the homo-

geneous-cost regions. Then the A* search is performed using evaluation values de-

veloped from the A* search [RICHBG87].

D. EXPERT SYSTEM SHELLS

Technology has advanced beyond the days of using a general purpose computer

merely to relieve humans of the tedious tasks of redundant mathematical calculations

or the endless searching of records. It is now possible to undertake more complex

tasks with improved accuracy. Specifically, the growing complexity of model

representation combined with a limited understanding of the processes of human

thought and reasoning, have led to the use of logic oriented languages to help

represent rules used in human decision making. Two such logic oriented languages
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are LISP and Prolog. But these languages require the researcher to be very closely

tied to the machine environment. With these languages, the programmer is directly

involved in the dctailed management of rules and facts. The desire to remove the

burden of rule and fact management has lead in part to the development of expert

system shells.

The use of expert system shells as logical programming environments provides

an arena for the development of computer programs to solve problems otherwise

difficult to formulate. These environments or shells provide such features as backward

chaining, forward chaining, inheritance, and fact and rule management. Backward and

forward chaining control strategies provide one of the critical features of expert

system shells, since these strategies constitute inference engines. The ideal

inference engine allows rules to fire independently of the order with which the

programmer plqce the rules in the program control structure. Actual inference

engines contained in expert system shells may fall short of this ideal, but such shells

provide a tool that allows programmers to think of rules as independent islands of

action waiting for the ocean of knowledge around them to provide the preconditions for

their firing. The expert systems shells available at the Naval Postgraduate School are

KEE by Intellicorp [INTEL86]. and ART by Inference Corporation [INFRNC85].

E. COMMUNICATIONS

The real time control of a visual simulation can involve the use of more than one

type of architecture. The ability to transmit and receive control information and

working data between processes implemented with different architectures was

investigated by Barrow [BARROW88]. The medium of communication between the

various architectures was TCP/IP using the Ethernet. The principal forms of

communication investigated were I/O stream and broadcast.

Broadcast Jatagrams were used by Barrow to communicate between IRIS

workstations. They provided a convenient way to send discrete messages without

12



connecting hosts or requiring a specific host address. This method of communication

was not supported between UNIX TCP/IP systems and the Symbolics CHAOSNET,

so s-, trn communications were used. The package of routines developed supported

messages containing a single character or number with the UNIX side of the

connection required to act as the connection server.

F. DEVELOPMENT SYSTEM DESCRIPTION

1. IRIS Graphics System

a. SGI IRIS/4D-70GT Graphics Workstation Description

The IRIS/4D GT is a line of high performance graphics workstations

with extensive hardware support for graphics modeling that can support the real-time

3D drawking of the large number of polvons necessary in a realistic vehicle simulator

[ZYDA&88]. This system has the following performance characteristics:

* 10 MIPS cpu (MIPS, Inc. R2000 RISC Processor).
* 40,000 10 X 10 pixel quadrilaterals per second ( lighted & Gouraud shaded).
0 24-bit Z-buffer.

* Parallel modeling matrix operations.

* Hardware Lrasforination matrix stack.

b. Software

The folloving software products were used in the development of the

APS system:

" SGI C (MIPS) compiler.
" U.NIX system V Operating System with TCP/IP Network extensions.

" SGI 4Sight T Window Manager. 4Sight manages screen and I/O resources of
the IRIS workstation. It supports graphics clients using the SGI graphics li-
brary as well as programs written for NeWS and XWindows[SGI4UG88].
APS runs as a client under the 4Sight server using the graphics library inter-
face for maximum performance. This gives APS the flexibility of running in a
window of arbitrary size and location. The window manager also provides the
popup menu services used extensively by APS. 4Sight also provides a font
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manager to scale and render text fonts in prompts, legend text and displayed
messages.

2. Symbolics

a. Symbolics 3600

Symbolics 3600 workstations were chosen to perform the path plan-

ning tasks of APS. The Symbolics family of symbolic processing machines are de-

signed with a proprietary CPU, which allows these systems to have LISP and other

symbolic programming languages implemented more efficiently and effectively than

conventional computers. Much of the efficiency and effectiveness of the Symbolics

workstations is obtained through hardware implementation of some system manage-

ment schemes. Some of the special architecture features used in the Svmbolics ,work-

stations includes: tagged architecture, multiple caches. hardware stack pointers,

pipelined instruction cycles, and parallel processing [SYMBOL88].

b. Software

The following software products were used in the development of the

path planner for the APS system:

0 Symbolics Operating System, Genera 7.1, provided a consistent background
for the programming environments.

* The Automated Reasoning Tool (ART) by Inference Corporation is the princi-
ple control language for the AI Agent. This rule-based, symbolic prorar n g

language is implemented on Symbolics workstation SYM4.

* Svmbolics Common LISP is used to provide access to existing path planning
search algorithms and communications code.

3. Network

Computer systems in the NPS Computer Science Department are linked

through an Ethernet local area network connecting some 76 stations. Average day-

time traffic is 25 packets/second or 30% peak utilization in worst 20 second period1 .

Based on a 24-hour test penod dunng Jar.uary 1989-
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The portion of the network used by APS is shown in Figure 2-1. The vehicle simula-

SYMBOLICS

IRISs

mutpnnet work itronc

ETHERNET (10 MB/sec)

Figure 2-1 Network Physical Topology

tors (commander and driver) are connected directly to the main Ethernet cable NeL-

ment. The Svmboli,, Al ,Aorkstations are connected to the net)Aork through a
muliporn etvwrk inter,.nnect, a Digital Equipment DELNI. The flowk of c,,,,,:,.-

tions as seen by APS is shown in Figure 2-2.

ART Client Server

Al TCP/IP Stream
Simulator Dri,.cr

AGENT ,.

Ci IAOS NET B R OA D('.A ST
DATA G R.A \1,,

Vehicle
PLANNER Simulator Commander

Figure 2-2 Network Logical Topology
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IH. METHODOLOGY AND ASSUMPTIONS

In this chapter, different candidate methodologies and algorithms are explored

and the rationale behind the ones chosen discussed. The goal is to explain why cer-

tain design decisions were made and how previous work was utilized. Small seg-

ments of code or ART rules are included to show the flow from theory to application.

A. DEFINITIONS

The following terms are defined here either because the,, are either used in a

non-standard manner or are key to the concepts presented in this thesis.

Slope Angle - The magnitude (absolute value) of the angle between the planar

terrain polygon and the horizontal plane.

Local Platform - A platform added at the driver's chile ,,muKi<or.

Net Platform - A platform added at a remote vehicle simulator and updated

over the network. ,f a network platform is selected to operate, onKy the vie\a n,

controls are active. Othe: vehicle parameters are controlled by It., home simu,'lator.

NOGO Terrain - Terrain classified as having a trafficabilitv of zero.

Path - A list of twc or more terrain point,,. The first point on _'.e .:h :., i'>

start. the last point is its goal.

Terrain Polygon Planar polygon having uniform slope. In APS :he,e are

triangles, one half of a terrain :rid defined b% the four elev itn,, at the % crt;c:ev.

Trafficability - The relati,.e speed at A hich a \ce:I e can I:a'cr., a cla., o:

terrain due to roughness. obstacle density, soil conditions, etc. In APS traffcabilrtv I,,

purely a function of the magnitude of the slope angle.

B. VEHICLE SIMULATOR

The vehicle simulator portion of APS provides for a realistic depiction of a tacti-

cal platform, its control response, and its interaction with t;'e terrain in a graphical
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simulation without the overhead of completely modeling the full suite of time consum-

ing and complex physical motion and dynamics.

1. Assumptions

The vehicles and terrain simulated in this study are assumed to have the

following characteristics:

" Tracked or wheeled tactical vehicle travelling offroad, capable of traver'ing
60% slope.

" Trafficability of slope limits vehicle speed before stability limit is reached.

" Trafficability of slope limits vehicle speed before engine power.

" Single gear ratio modeled. (Although different gears could be modeled by 11-
ing an array of time constants).

2. Coordinate Systems

The SGI gaphics ,oftware library uses a three-dimensional !3D gr<p

',,rhid coordinate svstem (Figure 3-1) in vhich the Z axis represents depth. d:.tau~c

from a plane perpendicular to the eye. rather than altitude or elevation. Another ci-,r-

dinate system is used when planning a route across terrain, corresponding to a t, o-

dimensional (2D) vie, of the terrain from directly above. l]ti\ is the t r::,er..J Tj::-

verse Mercator Projection. (UTM) ccxrdinate ,vstem and :s used for pac:h .' .

as in a militarV map, and is the coordinate sy stem used for the tcrr,in d,:'c In

the UTM system each point is represented by a Grid Zone Dc... : ,

meters North from the Grid Zone origin (a northinm,. and a di,:acc i -

from Grid Zone origin (an easting. The UTM coo.rdinates of a point x.,.z *.:icJ

the graphics world coordinate system can be found by:

utmx = x + (xgrld 10.0);
utm-y = -z + ( ygrld 10.0);
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Y(ELEVATION)

-Z (NORTH)

APS objects
-i idrawn in this

area

X (EAST)

Figure 3-1 Graphics lWorld Coordinate System

3. Platform Rotation Angles

In order to model moving objects, a convention must be established for the
rotation of the body (platform) axes in relation to the gaphics world axes. Normally

a platform's direction or heading is given as counterclockwise degrees from North.

Weapon systems such as artillery pieces are also aimed or "laid" using an azimuth.

an angle that follows the same convention for direction but a uses a different unit of

angular measure, ils (milliradians). The SGI graphics system and APS folloA a dif-

ferent convention. Rotation angles are measured as counterclocktwise angles from the

positive axis. Thus a vehicle heading due North would have an a:imuth (rotation

about the world Y axis) of 1.57 radians or 90 degrees1 . Other rotation angles follow

normal right-hand rule conventions except in the case of roll. With body axes as-

signed as in Figure 3-2, the following conventions are established for APS:

1 Graphics primiuves use degrees but the C library functions use radi.ns. All angles m APS are stored as radians and con%,crted as

necessa ry.
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azimuth - Rotation about the Y-axis is in the right-hand sense, from the
positive X-axis, Counterclockwise as an observer looks "!ong the
positive Y-axis toward the origin. Also called platform's course or
orientation.

pitch - Rotation about the Z-axis is in the right-hand sense, from the
positive the X-axis, Counterclockwise as an observer looks along the
positive Z-axis toward the origin. Angle between ground (X-Z) plane
and body X-axis.

roll - Rotation about the X-axis is opposite to the right-hand sense from
the positive Z-axis. Here the rotation is Clockwise as an observer
looks along the positive X-axis toward the origin.

heading - Compass course is a Clockwise angle in degrees between
north (world minus Z-axis) and vehicle X-axis. Not used internally in
the model, but it is used to display platfo m azimuth to the user.

Body Y

rorld Y

fBody Z

Figure 3-2 Body vs World Rotation Axes

4. Coordinate System Transformations

Since the user's viewpoint is fixed with respect to the vehicle or body axis,

and the graphics software requires such points in terms of its own world unrotated ax-

is, there is a requirement to transform points between coordinate systems. The posi-

tion of a coordinate in a rotating coordinate system with respect to a fixed or reference

coordinate system can be represented by a 3 X 3 rotation matrix MROT. The rotation
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angles are known as "Euler" angles. The rotation matrix representing rotations about

Euler angles, called yaw (Wv), pitch (e), and roll (0), in that order is:

MROT = RZ, roll Ry, pitch RX, yaw [FU&87: pg 25] =

L cosvcos cosysin0sino - sinNfcoso cosifsin0coso + sinNysino 1
sinycosO sinysinesino + cosycosO sinysin0cosy - cosesin0 (3-1)

-sine cosesino cosocos¢o

The transformation of a three dimensional vector representing the body off-

set to the fixed reference is achieved by pre-multiplying' MROT by the vector or:

Pw = PB N1 ROT (3-2)

This transformation requires the following operations:

3 sin function calls

3 cos function calls

16 + 9 floating point multiplications

4 + 6 floating point add/subtract

Fortunately the overhead of these operations can be avoided by soiving a

more general problem that includes translation and scaling during the transformation.

Such a transformation from body to world coordinates is normally done by means of a

4 X 4 homogenous transformation matrix. This matrix represents the location of a ro-

tated and/or translated coordinate system (body), with respect -' a fixed coordinate

A A A

system (world). Symbolically then, the transformation is PW = PB MROT' where P

represents the 4 X 1 homogenous coordinate vector.

The geometry engine of the IRIS is designed to perform these type of

transformations using 4 X 4 matrix operations efficiently. The world coordinates of

1Note that in graphics a body offset is transformed to where it would appear in world coordinates so the rotaUiios matnx is pre-mul-

uplied by the position vector In robotics where objects actually move the rotaton marix is post-multiplied b the 1-'sxition ecior
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the eye position vector, for example, can be calculated by having the IRIS hardware

perform rotations as if the body were an object about to be drawn and pre-multiplying

the rotation sub-matrix of the result by the offset vector. The result is the world coor-

dinate offset position. Figure 3-3 is an extract of transform-body to world that per-

forms these operations using the IRIS hardware.

/* Do rotations in reverse gimbal order */

rotate( (Angle)(azimuth*RTODX_10), 'Y' ); /* azimuth *
rotate( (Angle)(elevation*RTOD X_10),'Z' ); /* pitch *
rotate( (Angle)(.roU*RTODX_10), 'X' ); /* roll */
getmatrix( offsetmx ); /* Get accumulated rotation matrix */
*eye-x = dx*offsetmx[0][0] + dy*offsetmx[1l][0] + dz*offsetmx[2][0];
*eve v = dx*orrsetmx[0][1] + dv*offsetmxll][1] + dz*offset mx[2][1];
*eve_z = dx*offsetmx[01[2] + dy*offsetmx[1][2] + dz*offsetmx[21[21;

Figure 3-3 Transforming Body Offsets to World Coordinates

5. Physics of Motion

Vehicle motion and control response is modeled as changes in the vehicles

velocity vector v, with changes in its magnitude being acceleration or braking, and

changes in its direction being steering. The model treats control inputs as changes to

the normal constant velocity equilibrium state on level ground. The vehicle engine, at

a particular throttle setting, provides sufficient force to overcome all resistance forces

and maintain a certain speed corresponding to equilibrium between propelling and

resistance forces. If the propelling force is increased then the vehicle will accelerate

up to a new equilibrium velocity. If throttle is decreased then it will "coast" down to a

new equilibrium velocity. The vehicle velocity corresponding to maximum throttle is a

program constant, MAXGNDSPEED = 45 MPH.1 . Braking is modeled as

In APS there is one set of model constants. All types of vehicles react and "feel" the same to the driver. A jeep accelerates

no faster than a tank. However, these constants could faidy easily be expanded to an array of constants indexed by vehicle

type
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deceleration at a variable but velocity independent rate. Steering response is

modeled as an exponential function of time.

a. Friction and Coasting

A vehicle of mass m, and velocity vector v, travelling on a level sur-

face, has momentum mV At equilibrium, the only forces opposing motion are frictional

resistance forces, FR. Frictional rolling resistance is largely fluid friction and comes

from air resistance, lubricant fluid resistance in bearings and gears, tire deformation

while rotating, soil deformation, etc. For each resistance force

FR = -kmv n V-tv (3-3)

Different resistance forces have different exponents for v. For exam-

ple, for air resistance at low speeds (< 24 meters/sec), n = 1 [MARION70: pg 53].

In fact for all resistance forces at the range of speeds dealt \ith in this study, n < I is

assumed. For simplicity a convenient approximation is made that the force contribu-

tion from all sources of resistance can be combined into one resistance force with n =

1, with some combined constant k.

Looking at just at the magnitude of the resistance force and remem-

bering that it is always opposite the direction of motion, (3-3) becomes:

FR = ma = mdv/dr = -kmv (3-4)

Eliminating constant mass and integrating over time this becomes:

f dv/v = -k fdt (3-5)

which has a solution of the form:

In v = -kt + C (3-6)

Using the initial condition v(t=O) = v. means C = In vo. Taking the exponential of both

sides gives:

elnv =e (-kt + Invo) (3-7)

22



1' = e -kt. e Invo (3-8)

v= x' e -kt (3-9)

Let t = 1/k. Then v = vo e -kt = '0 Ile = v/ 2.718. The quantity l/k is called a time

constant and corresponds to the time it takes the velocity to decrease to = one third of

its original value. This time constant, t, can therefore be used to calculate an average

rate of change per unit time or:

v = v. - ( v.• dt/) (3-10)

Note that this equation depends only on the time interval and velocity at the begin-

ning of the time interval. It also avoids calculaing the exponential function. The con-

stant -t controls how quickly the vehicle coasts to a stop or lower equilibrium speed.

A large value of -t corresponds to a streamlined, wheeled vehicle on hard pavement,

as opposed to a small value of t which might represent a track laying vehicle in mud-

dy soil. The coasting function (3-10) is coded as: coastvel = currvel ( currvel /

COASTINGTIMECONSTANT * elapsedsec);.

An analysis of a typical case shows how well this code fragment pro-

duces the same result as equation (3-9). For COASTINGTIMECONSTANT = 10.0.

elapsedsec = 0.5, and currvel = 40 MPH, after 10 seconds elapsed tne, (3-9) yields

14.72 MPH while the code produces 14.34 MPH. In APS the final velocity for coasting

need not be zero. It could be a lower equilibrium velocity. The exponential nature of

the decrease in velocity means that the new velocity would be approached asymptoti-

cally, never actually reaching the target velocity (variable cmdvel). Therefore there is

a cutoff in the procedure velocitymodel, to wit:

If ( fabe( cmdvel - currvel ) - TOMPS ) retum( cmdvel);

This returns the selected velocity as the current velocity if it is already within 1 MPH.
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b. Braking

Deceleration due to braking can be modeled as a variable resistance

force that is independent of velocity. For a braking factor b, 0.0 _ b _ 1.0,

FBRAKE = rn = rn b dv/dt = -kBRAKE m b (3-11)

Eliminating constant mass and rearranging, the new velocity is given by:

v = v. + dv = v + (-kBRAK E b dt) (3-12)

or, in code:

newvel = currvel + ( MAXDECELERATION * brakefactor * elapsedsec);

where MAXDECELERATION is a constant representing the maximum rate of deceler-

ation before skidding (shear force between vehicle and ground > frictional force) and

brakefactor represents the input to the model from the vehicle controls, a value of 0.0

representing no braking down to -1.0 or 100% braking. This control input can come

from dials, the mouse or be calculated by an autopilot.

c. Acceleration

Acceleration corresponds to advancing the throttle position to a new

velocity position, vT, causing engine output to exceed the propelling force 'necessarv to

overcome the current rolling resistance. It assumes linear engine power output. Sub-

tracting equilibrium forces at the current velocity, v ,. gives:

F A = m dvidt = kA( V . v° ) m k3-13)

dv= kA( IT vo ) t (3-14)

dv = I/t v T r - vo ) dt (3-15)

Where t is again a time constant = 1/kA. Equation (3-15) is implemented as:

newvel = currvel + ( ( cmdvel - currvel ) * dt / ACCELERATIONTIMECONSTANT;

For ACCELERATIONTIMECONSTANT = 10 seconds and cmdvel = 40 MPH, this

gives:

0 : 20 MPH in 6 seconds
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0 = 30 MPH in 11 seconds

0 z 40 MPH in 21 seconds

This compares well with the nominal acceleration for the US Ml Tank of 0 > 20

MPH in 7 seconds [JANES87: pg 122].

d. Slope Calculations

Elevation is a function of UTM coordinates, h(x.y). The gradient of h

is a vector in the ground (X-Z) plane that points in the direction of greatest increase

of altitude.

Vh=L ay/ax, N./az (3-16)

This model is not so concerned with the direction of the radient vector as w ith its

magnitude and the magnitude of the slope angle vh which is the angle between a tan-

gent to the elevation function and the X-Z plane.
1/V2

Wh= tan'l / a! x )2 +(D z )2 (3171 (3 -17)

Fortunately, it is not necessary to calculate the slope angle directly. It can be calculat-

ed from the terrain polygon patch surface normal unit vector N wAhich is already avail-

able for each terrain polygon from the lighting model calculations. Call W, the angle

between N and the X-Z plane, which is also the map ground plane. Since N, with

components x., Y., z., is perpendicular to the terrain polygon, W + I = t

2. Now Il ta
n 'l ( v A- ( ,_z-1/2

2. N, .. Z ),and lnce tan(rt 2--0)=cot( ) and

tan( 0 ) = / / cot( 0 ), then

h = tan (( x, + z) yN
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In the vehicle simulator, this result is produced by the function

convertnormal to-slope which returns Wh in radians.

If the surface normal of the terrain polygon is not readily available

(perhaps because vertex normals are being used), the effective slope of the vehicle

can be calculated from its pitch and roll. These body angles are used to calculate the

world coordinates of a body normal, a normal vector which points out the roof of the

vehicle, using another math function transform_body to world, shown in Figure 3-4.

float normal[3], slope;
transform bodytoworld( platform->cse,

platform->base_pltch,
platform-> baseroll,
0.0, 1.0, 0.0,

&normal[O],
&normal[1],
&normal[2]);

slope = convert-normal_to_slope( normal);

Figure 3-4 Calculating Effective Slope Using Platform Orientation

Finally, vehicle pitch alone can be used as effective slope to !irrJt

speed, since, stability factors aside, pitch angle is the slope resistance the enrine

must overcome.

e. Effects of Slope

Instead of directly modeling the effect of acceleration forces on a vehi-

cle due to gravity when travelling on sloping terrain, the model assumes that the traf-

ficability of sloping terrain limits vehicle speed before engine power would be

insufficient to maintain a set speed. Maximum vehicle speed is limited by a slope

governor that decreases maximum speed as a function of slope. This slope governor
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function is shown in Figure 3-5 where MAXGNDSPEED is the maximum speed a

Speed (MPH)
MAXGNDSPEED

M IN _M A N EUV ER _SPEED . ................ ... .... .. ......

0 270 Slope (degrees)

Figure 3-5 Slope Governor Function

vehicle can achieve on level ground and MAXSLOPE (270) is the maximum slope tra-

versable by the vehicle. Since limited speed could go to zero in untrafficable terrain,

the vehicle would be stuck, unmovable, if it ever entered a NOGO terrain patch. A

low "maneuver" speed is allowed for the driver to carefully and slowly work his way

out of such a situation.

f. Suspension Oscillation - "Bounce"

When a vehicle crosses a bump or other change in terrait s ,pe, il

induces an oscillation in the spring-mass suspension system. This oscillation

continues until it is damped by the shock absorbers and friction of the vchicle

suspension moving parts. This motion can be quite difficult to model due to the

complex geometryv of a vehicle suspension system. However, by limiting oscillations

to changes in vehicle pitch angle only, this motion is easily modeled as simple

damped harmonic oscillation along a single axis (the vehicle pitch angle) as shown in

Figure 3-6. This transient pitch is then added to the base vehicle pitch caused by the
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slope of the terrain. Two additional fields in the vehicle data structure are created to

handle this effect, bounceamplitude and bouncetime.

Pitch Amplitude

dPtc

TIME

TranientPitch Offset

Figure 3-6 Damped "Bounce" Oscillations

The equation for damped harmonic motion [MARION70 :pg 371] is:

y = y, et cos( oDt + 6 (3-19)

amplitude oscillation

where 3 = b / 2m, b is the damping force, m is the mass of the vehicle, and coo is the

frequency of undamped oscillations of the system. Assume coD coo" Choose a time

constant t, which is equal to the time interval when amplitude of the osciliations has

decreased to 1 / e of its original value, which is t = 2m / b. Equation (3-19) can then

be written as:

y = [ y- (y *dt /t)] * cos( wDt) (3-20)

If the displacement y is the suspension travel at the front wheels then 0 =

tan' 1 ( y / wheelbase). For relatively small displacements, the damped harmonic oscil-

lations can be calculated directly using the pitch angle 0 and (3-20) becomes:
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0 =[00 -(0. *dt/T)]*cos(cot) 3-21)

This can be broken up into two code steps for each cycle of the update loop:

1) Calculate the current angular oscillation value.

bounce_pItch = bounceamplitude

cos( OSCILLATIONFREQUENCY *TWOPI *totaltime);

2) Calculate new bounce amplitude based on damping effect.

bounce_amplitude = bounce-amplitude -

(bounceamplitude * dt ! DAMPING_TIMECONSTANT);

With DAMPINGTIMECONSTANT set to ( 1 - Ile ) / t.

Empirically, equation (3-21) and its code can be shown to approxi-

mate the results of (3-19). Considering a typical case1 and comparing just the de-

cline in amplitude after 3.0 seconds, equation (3-21) yields 5 50 (converted from y

displacement), while the code gives 4.8' . Only a small part of this difference (app

0.10) comes from osc. iting the pitch angle directly instead of oscillating the displace-

ment and then converting, 5.5' versus 5.60. The total error is small enough that

"tuning" the constants can bound this error well within the difference detectable in a

moving visual simulation.

6. Simulation Time Interval

The model time interval, or dt, using Leibnitz notation, is the elapsed time

required to complete one processing loop in simulation time. Since the rates of

change of most of the processes are non-linear, the linear approximation used is only

a good approximation if dt is small, o 1 second. The second problem that results if dt

is not small enough comes from delayed control feedback. For example, if steering a

vehicle in a turn and dt is of the order of 1 second then the driver will tend to over-

shoot control corrections, making it difficult to steer onto a desired course or avoid ob-

stacles. This lower bound is due to control response and depends on many factors,
1For D.\MPING CONSTANT ,- d = 025 secoids, "heelhasc = 2 0 meters, initial displacement of 5 meters _ 15 degrees. and

totLa time 3 0 sc onds
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including platform velocity, control responsiveness, complexity of maneuvers, etc. Re-

sponsiveness for an aircraft travelling at hundreds of MPH must be greater than for a

ground tactical vehicle travelling cross country at speeds typically < 25 MPH. For

such ground vehicles, a subjective lower bound appears to be 3-4 frames or cycles per

second.

7. Paths

Paths in APS resemble the military concept of a "route" with an SP (Start

Point), RP (Release Point) or goal, and a CP (Check Point) at turning points or criti-

cal points. Figure 3-7 shows the path data structure. The SP of the path is its first

point and the RP is the last point on the path. Each platform data structure

(Appendix A) contains a pointer to a path and a pointer to the next point along the

path. Path manipulation routines are contained in module path.c.

Paths are created and maintained separately from platforms. When a vehi-

cle is "assigned" a path to traverse, a copy of the path is made for the platform and a

pointer to the platform is added to the list of platforms assigned to that path. Thus

several platforms can be assigned to traverse a path and navigate along it indepen-

dently. Also, if a point on the original path is altered, all affected platf,)rms can be no-

tified. On the other hand, if a platform must deviate from the path to avoid an

obstacle, intermediate points can be inserted in the platform's copy of the path vith-

out affecting the original.
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Utm-point

double x double v

PTNGDE
Utm-point point

nextpt - PTNODE

PATH

int pathid

char[80] name

int numpts

platforms -4 PLATFORMNODE

ptlist -4 PTNODE

lastpt --* PTNODE

nextpath -- PATH

Figure 3-7 Path Format

A platform being guided by an external agent by receiving one po:n: i: a

time is actually' following a path that consists solely of a periodically updatcd gai.

As new guide points are received, the goal point is replaced. The autopilot module

can then navigate a platform along a path by heading successively toward each point

on the path list. Figure 3-8 shows a tank approaching the goal point, which is drawn

as a tall, pyramid marker on the terrain. The paths are maintained as a linked list

managed using four global variables:

pathlsi - pointer to first path on path list.

pathls:etnd - pointer to last path on path list.

31



Figure 3-8 Driving a Tank Toward Its Goal
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numpaths - number of paths currently on pathlist.

path.plckld - unique identifier for graphics picking.

Path manipulation is accomplished by selecting the "PATH OPER_"-.-

TIONS" entry in the main menu. The path operations menu is then constructed and

displayed, providing for the selection of up to four functions:

1 - Display Paths - ON/OFF

2 - Construct a Path

3 - Delete a Path

4 - Assign Vehicle to a Path

The first option toggles the display of paths on the 2D terrain map. Figure 3-9 shows

the display used to manipulate paths. Paths are displayed by default but may be

turned off to reduce screen clutter. Menu option 3 is only presented if there is at least

one path defined. Option 4 is only presented under the additional condition that at

least one platform is defined. At present, all platforms except FOGM can be as-

signed to a path. A path, once defined, is stored in a file containing all currently de-

fined paths. When APS is started, it searches for a file "aps-paths.dat" in the

following directories, in order: the current (default) directory, the directory containing

the APS executable, and the "DTED" directory. If the file is found. APS loads the

paths it contains. Each time a path on the path list is created or destroyed, the file is

updated.

8. Guidance States

The current control state of each platform is reflected by the combination of

two fields in each platform record:

control - MANUAL or AUTOPILOT

ext-guldance - ON or OFF

The slot ext guidance determines whether platform guide points are taken from in-

coming message or an assigned path. The slot control determines whether course
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Figure 3-9 Terrain Map Used for Path Planning
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commands are calculated by the autopilot or are provided from the vehicle controls

(dials or the mouse joystick).

9. Autopilot

The autopilot determines the commanded course and speed for each local

platform that has its control field set to AUTOPILOT and has a path defined. Since

external guidance messages update the platform's local path record, the autopilot

functions irrespective of the source of the path data. The autopilot calculates an azi-

muth to the current guide point. The current guide point is automatically updated to

its successor on the path (if there is one) when the platform is within VICINITY

meters of the way point. If the platform gets within ARRIVED_DISTANCE of the

guide point then the guide point miist be the last point on the path, i.e. the path goal.

If so then the autopilot applies the brakes to bring the platform to a halt without over-

running the goal. Figure 3-10 shows the relationship of these distances. Precise

VICIN-ITY

GARRIVED
DISTANCE

Figure 3-10 Autopilot Control

control would require both these distances be variables that are a function of the plat-

form's speed, instead of constants, so that a platform starts to brake or turn in the

time necessary to stop or turn exactly over the guide point. This level of precision

would be necessary to navigate a platform through a field of obstacles and would re-

quire projecting ahead the platform's location so as to issue the proper commands at
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the correct time. However, the simpler algorithm presently used is adequate to halt a

platform travelling at maximum ground speed (MAXGNDSPEED) before reaching

the goal.

B. PATH PLANNING

1. Introduction

The path planning process for this study simulates the actions of the vehi-

cle commander in planning paths, and issuing waypoints for a controlled vehicle. The

commander starts out with the following facts:

* Which vehicle is being controlled.

• Start point and goal locations are known.
• A terrain map of the region to be traversed is available.
* The terrain map contains cost of traversal informa:ion for the region.
* Vehicle speed.
• Vehicle course.

• Vehicle guidance mode.

* Vehicle location in UTM coordinates.

• Current simulation time.
The commander uses this information to plan a path to the goal, selecting

the quickest path between the start point and the goal point. In selecting a path, the

commander chooses prominent terrain features as guiding waypoints for the driver.

Once the path is selected, the commander issues commands to the driver to proceed

to the first waypoint as indicated by the commander. The commander continues to is-

sue new waypoints as the driver pilots the vehicle close to the last way-point. As the

simulation continues, the commander needs to be informed of changes to the vehicles

status as indicated here.

" Vehicle ID.

" Vehicle speed.

* Vehicle course.

* Vehicle guidance mode.

36



* Vehicle location in UTM coordinates.

* Current waypoint location in UTM coordinates.

2. Path Planner Control Program

The path planning simulation of the commander is divided into two major

areas, the overall controlling program and the actual search algorithm that does the

path planning. The term path planner is used to describe the combined Al processes

that make up the Al simulation of the path planning commander. The path planner is

kept separate from the graphics simulation of the vehicle and implemented on the

Symbolics AI workstations. Two reasons for this are: first, a great deal of path plan-

ning work done at the Naval Postgraduate School is done using AI workstations, and

second, a substantial amount of the program code produced is done in LISP and Pro-

log that can be easily ported between the different Al workstations.

The path planner control program is separated from the actual search por-

tion of the path planner for three reasons. The first is to allow modularization of the

code. The communication costs associated with this approach do not appear to over-

ride the benefits of being able to substitute different search algorithms. The second

reason for the separation was to allow the path planner control program the exclusive

use of a workstation. Expert system shells require considerable system resources,

and it is felt that the overhead of running the expert system shell would put an exces-

sive load on a single workstation when combined with running real time path planning

searches. Finally, this separation should allow more than one search program to

work simultaneously.

a. The Expert System Shell

High turnover and short learning curves predominate much of the frus-

tration associated with thesis work. Therefore, since one of the major goals in this

study was to provide a test platform that could be used to study the relationships as-

sociated with the application of artificial intelligence techniques to the control of au-

tonomous vehicles, it would be advantageous to have the path planner controller

37



written in a high level symbolic programming language. The use of such a language al-

lows a researcher to examine problems at a much higher level of abstraction than with

LISP or Prolog.

One of the criteria in the selection of an expert system shell was the

desire to have the path planner control program continuously monitor the knowledge

database and react to changes therein. Forward chaining control strategies facilitate

tfis continuous flow within thc tulc based system by simply keeping fresh facts as-

serted. In ART and KEE, the forward chaining mechanism is self contained in the in-

ference engine of the shell. There are forward chaining control implementations

written for both LISP [MCNKLE&88] and Prolog [ROWE88], but abstracting the re-

searcher away from the mechanics of forward chaining produces code which is easier

to understand.

ART was chosen over KEE in part because it appeared easier to ex-

amine the workings of the rules in ART. ART allows direct manipulation of the rules

through Symbolics' ZMACS editor, and through the use of ART's ability to watch and

record the firing of rules, and the assertion and retraction of facts.

b. How ART Works as a Process Controller

ART is a rule-based, expert system shell, containing the ability to

forward chain and backward chain. The principle inference engine is the forward chain-

er. As stated in Chapter II, an ideal inference engine within a shell would provide an

uncluttered view of the rules and knowledge base used in a problem. In reality, there

are inherent limits on the inference engine implemented within ART. One important

limit is that an artificial structure and order are imposed on rule firing. A simple exam-

ple of this is the difference between the firing of two rules that require identical pre-

conditions. One rule must fire first. The engine must decide. The choice could be as

simple as choose the rule that appears first in the program structure, or choose the

shortest rule. And though the choice may be arbitrary it must be consistent. ART ap-

pears to choose the first rule in the program structure.
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(1) Rule Structure. ART's rule structure provides a straightforward

way of declaring the complete predicate logic for a given rule. A sample rule extracted

from the path planner control program is presented in Figure 3-11 below. The left side

of the rule contains the preconditions necessary for the rule to fire. The right side of the

rule carries out actions. These actions can be controlled by binding temporary facts and

by examining states through the use of conditional statements. The parts of the rule

are clearly shown in Figure 3-11. Herc the rule is fired when the fact (menu one) is

asserted. The right side of the rule can request the operator to perform some action

(detrule MENUI
(schema sym

(one ?sl)
(two ?s2)
(three ?s3))

?a <- (menu one)

(printout t t 'Where is the path planner located7')
(printout t t *Your choices are the following. chose one by its letter.

t "a' "sl
t "b s2
t "c ?s3
t "NOTE-Please ensure that the path planning software is running'
t)

(bind 'b (read))
(if (or (eq ?b 'a)

(eq ?B 'A))
then

(assert (sym-link ?sl)
(menu two)

else

(retract ? a)
(assert (menu one))

(retract ?a)

Figure 3-11 MENUI Code Fragment

such as choose the Symbolics machine where the search control program resides. The

operator's response is then checked to ensure a valid response, and facts are asserted

that enable the Symbolics communications start up rule to fire and start
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communications with the appropriate Symbolics workstation. Of special note here is

that a fact in ART must be retracted before it is reasserted. If the fact is asserted

before it is retracted, the assertion will be lost. Thic is because ART keeps only one

copy of identical facts. The Path Planner Control Program containci in Appendix B

provides a more detailed look at the code.

(2) Continuous Forward Chaining. A rule fuing control mechanism is

neecea dhat aliows the path planner control program io continuously monitor the

knowledge base and the communications sub-process. This is accomplished with

continuous forward chaining by cycling through a base set of rules. The rules chosen

for this cycling are the interface with the vehicle clock and the calls to the system's

communications ports. These rules are selected because they are the most likely

routes for new facts to enter the knowledge base of the commander. The Symbolics

read-char-no-hang stream read method is used in the communications rules to ensure

that the communications calls do not wait if there is no data on the lines. Rule cycling

begins when a rule has met all of its enabling preconditions. A rule fires when all of

its enabling facts are met. The rule check-comm-Inks-Iris retracts its enabling fact,

and asserts the facts (check-comm Iris), (check-comm sym), and (clock-update yes).

Order of assertion is important here because the last fact asserted will be pursued

first, as explained in Paragraph c. below. If no information is available from the IRIS

communications link, the clock is updated, the Symbolics' communications link is

checked, and finally ART cycles back through the checking of the IRIS

communications link.

(3) Rule Precedence. Actions by a human commander are taken

according to some precedence or order imposed by the commander's judgement. It is

desired to duplicate the human's ability to judge and separate actions that need to

happen immediately from those that could be postponed. Assigning rules an order of

precedence allows more important rules to be examined first. Rule precedence is

accomplished by the use of ART's salience function. Salience values are from -10000
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(lowest precedence) to 10000 (highest precedence). A rules salience value is

assigned at compile time. If the rule's salience is not declared, a value of 0 is

assigned. Rules of the same salience are loaded onto a stack as they become ready to

fire. Rules thus grouped are fired according to their salience value first, then

according to their position on the stack. It is useful to think of ART as having a

separate stack for each salience value, and always firing rules off the stake with the
,t_:,,- .,, c i c: . , . . - , V rcce c,icc, the -ule loaded to 6,e .,ta-- ia t

is fired first. This provides a mechanism to mimic the human ability to pursue what

should be done. first. Rules must be written such that more important things have

higher saliences than less irportant things. The consequences of this stack action

effectively imposes a most recent fact following algorithm. A side effect of a most

recent fact following algorithm is that it can lead to indefinite postponement of rules.

This can happen in two different ways. First, if high precedence rules are cczntinualv

added to the agenda stacks, low precedence rules will never fire. A second and more

subtle way a rule couid L. i-,-4,finitelv postponed is by asserting a fact that activatc,

a rule of the same precedence as the postponed rule. Since all newly assertzd rules

are loaded to a stack, the most recent rule is looked at first, thus postponing the older

rule. This indefinite postponement is easily handled in Prolog by using an assertz

command. Using ART, the programmer must control rule firing by sequentially

activating rules, and ensuring that all sequences of rule firings lead back to the lowest

level.

(4) LISP Calls. LISP calls are used where it is more convenient to

perform an action on LISP data structures or to use existing LISP functions. LISP

calls can be made only on the right hand side of rules, and are delineated by #L

immediately before the LISP code. ART can make direct use of LISP symbols and

values, but is clumsy at manipulating LISP lists. Therefore, LISP lists are converted

to ART facts and schemas that use relations within ART to link related facts. An

example of this, in Appendix B, is the rule process-waypoints. In this rule, the
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incoming waypoints are stored with the vehicle and their sequence number from the

list they came from. ART also fails to recognize the strings produced by calls to *:L

LISP communications packages. Here Common LISP provides the Intern function to

convert a string into a symbol. This symbol is then fed to ART. As can be seen in

Figure 3-12 below, the Intern command requires a prefix that designates which

Symbolics pack.ge the LISP function is defined in. The ART package does not have

all of the Symbolic"' C-nmon LISP functions available.

(bind ?b IL(sd intern (scl:send talk-i check-ins 3)))

(it (eq ?b '>>>) then

Figure 3-12 Code Excerpt from the Rule read-update

3. Path Planning and Search Algorithms

The second portion of the path planner is the search algorithm. The require-

ments for the algorithm are that it accept as input the following data:

. Start point

" Goal point
* Vehicle ID

* UTM coordinates of the lower left hand comer of the 10 KM grid window.

The output requirements are waypoints passed individually with the cor,.,-pondilg

sequence number and vehicle ID.

a. Search Region Representation

Planning a path across real or simulated terrain requires some criteri-

on be established that will allow the path planner to choose between routes. Slope is

a common terrain feature used as a simple distinguishing factor [ROWE&881. The

greater the slope, the greater the cost of traversal. This criterion has some interesting

properties that are not in accord with the physical environment. In APS, effective

slope is an absolute value independent of the direction of traversal. In traversing an
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actual physical region a given incline has varying degrees of relative slope depending

on the traversal angle. Since the major goal in this study is to build a test platform

that would allow the testing of search algorithms and their interfaces with simulated

vehicles, this discrepancy is accepted in the interest of simplifying the problem. An in-

teresting result of this simplification is that bidirectional searches can be performed,

because the cost of traversal is independent of the direction of travel across a given

iegioal ,t it givcii siope.

Discrete geometric cells were used because of the simplicity of

conversion from the graphics elevation data to the slope data used by the wavefront

path planner. The use of the wavefront search techninue was based on the

construction of the elevation and slope data files and the ease of implementation of

the wavefront algorithm. The slope data files produced by Felhoelter's methods were

designed to contain all of the information about a given search region [FELHOE88].

This information included the boundary information that ensured the search algorithm

would not overflow the search region. This boundary information was otherwise

unrelated to slope information of the region. The stripping off of this boundary

information was trivial and could be accomplished while building the slope files or

after they were complete. However it became apparent that the use of slope data

files containing one by one to ten by ten kilometers of slope data would prove difficult.

Using files built r. this manner would have required the use of 1225 to 625 separate

slope data files for a 35 KM by 35 KM map that covered the same region as the map

used by the IRIS based vehicle simulator. It would have also required either

predefining the area to be searched or some other way of selecting the appropriate file

for a given run. Initially a 35 KM by 35 KM slope data file was used, but it was found

that the time to read in the data took as long as six minutes. This long read-in time

occurred because each record of the file had to be read in sequentially until all of the

data for a given map was read in. This read-in time was reduced to one minute by

converting the text file to a binary tile and using the Symbolics LISP file-position
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function, which is Symbolics' equivalent to the Iseek function of C. Finally, the slope

files were recomputed using the graphical methods developed on the IRiS

workstations. This was done because the methods used by Felhoelter produced

significantly different slope data than that produced on the IRIS workstations. This

difference appears to be based on the fact that the vehicle simulator uses the slope

calculated from the lower left triangle of a one hundred meter square in the graphics

simulation. These triangles were used because they form the planar surfaces used in

the graphical displays on the IRIS workstations, and the drawing routines provide

normals to the surface from which slope can be easily calculated. These methods

were described earlier in this chapter. The only significant difference between thb L.O

methods is when the slope calculations are performed. The slope information for the

Svmbolics processes is calculated before the simulation is begun. vhile the slope

information is produced at system run-time by the vehicle sirmator.

C. AUTONOMOUS vs. MANUAL CONTROL

The guidance and control states of APS have been previously described. What

follows contains a fuller explanation of what is involved in the transition between

these sLates. The states were designed to be as independent and flexible as possi-

ble, to allow switching in and out of autopilot control while being guided by an exter-

nal agent and. conversely, to allow switching external guidance on and off while

remaining under autopilot or manual control. Ideally, the source of external guidance,

human or Al agent, would be transparent to the guidance system. Unfortunately, the

methodology used for human control introduced asymmetries into the design. An ex-

ternally guided vehicle is controlled by a remote human path planner on another graph-

ics workstation differently than it is guided by the remote Al agent. The human

commander designates a path for a remote platform vehicle just as if it were a local

platform. The path is then transmitted across the network in its entirety. Thereafter

the vehicle driver navigates as if the path had been generated locally. On the other
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hand, the Al agent transmits one path point (guide point) at a time, successiveliy up-

dating them as the vehicle gets near. The source of this lack of symmetry lies in the

greater functionality of the Al agent. It was designed to calculate a new path if the

controlled vehicle encountered unforeseen obstacles or deviated too far from the calcu-

lated path. This cannot be done in advance. This dual role of global and local planner

was never envisioned for the remote human conn-an.Jcr except in the case of replac-

ing one global path with a new one. In essence then, the external guidance state be-

comes one of exclusive Al agent control and the methods used for the transitions

back and forth between external and internal guidance are designed to accommodate

the different models of guidance and preserve the transparency to the rest of the vehi-

cle simulator.

A platform's external guidance can be toggled ON or OFF either locally by a

popup menu selection from the driving menu or remotely by network message. This

network message is generated by a remote human commander making the same

menu selection as would the local operator. If the selection is made locallv, the mode

transition is made. If the selection is made remotely, the message is transmitted.

Actions on the local platform are the same regardless of the source of the command.

At present, no authentication or permission system is used. nor is there a cs'al lck-

out or override provided.

External Guidance OFF --> ON causes the following actions.

1) Set extguldance toggle ON.

2) Send an INITIALIZE control message to the AI agent containing the UTM

coordinates in meters of the origin of the current ten kilometer box, vehicle identifier.

start and goal points of the path, and current simulation time (If no Al agent is con-

nected the message is discarded). Note that the start point sent is tne platform's

current guide point which may not be the SP of the originally assigned path. If the

platform had partially navigated a path under internal guidance, then the guide point

will be the next point in the remainder of the path.
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3) Set up the platform to receive guide points by making the platform's current

location its guide point and deleting the remainder of its path. This is done so that the

autopilot, if engaged, will simply bring the platform to a stop instead of heading out di-

rectly for the goal. The portion of the path traversed so far is preserved on the front of

the list.

4) Finally a position update message is sent over the network on both broad-

cast and stream channels. Currently it is this UPDATE message, with its guidance

field set to ON, which triggers the AI agent to calculate an optimal path based on glo-

bal terrain cost data. However, there is nothing in the vehicle simulator to prevent

the Al agent from choosing the start and goal points by itself, sending a message to

turn guidance ON, and then sending guide points from a calculated path.

External Guidance ON --> OFF causes the following actions:

1) The platform's external guidance flag is set to OFF. This causes any incom-

ing guide point messages for this platform to be ignored.

2) The platform's path is deleted.

3) Its original assigned path, if any, is reloaded.

4) The platform's guide point is set to the point on the original path closest to

the platform's current location. In this way, a platform taken off external guidance af-

ter navigating a portion of a path would not go all the way back to the start point, but

can complete the remainder of the path. Note that the closest path point is not neces-

sarily the best path point pick to minimize travel time or some other performance mea-

sure. Locating the best path point is a non-trivial problem in itself. In some cases

the simple method used will guide the platform back to a previously passed path point

or directly to the goal point. Generally however, when assigned a path with many

fairly short segments, backtracking and loss of time will be limited to one half the

length of the current path segment.
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5) Finally, a position update message is sent over both broadcast and stream

channels. The guidance field of this message reflects its new state and directs the Al

agent to stop sending guide points.

D. COMMUNICATIONS

The amount and sequence of data that must be passed over the network is de-

termined by the functions to be performed. For communications between vehicle sim-

ulators, sufficient data is needed to display the platform on a remote simulator as well

as model its movement. Information flow with the AI agent is determined by the divi-

sion of labor between the vehicle simulator and the commander, human or machine.

Updates are sent between vehicle simulators or to the AI agent only when a state

variable such as speed, course, weapon firing, etc., changes. In general, in communi-

cating with other vehicle simulators on the network, the vehicle simulators PUSH in-

formation over the network using broadcast datagrams to any others who might be

listening. Only upon initialization does the system poll for a response.

There are usually several methods to chose from when communicating between

applications over a LAN. In the case of the APS development environment, TCP/JP

supports byte streams, which require dedicated connections, and datagrams, which

may be connectionless, and even addressless in the case of broadcast datagrams, or

may be sent between connected hosts. The vehicle simulator's use of a PUSH broad-

cast system to communicate with other vehicle simulators is adequate for the amount

and types of messages needed by that portion of APS. It would have been simpler if

this same approach could have been used 'or communicating with the AI agent.

Broadcast datagrams provide for reliable' transmission of discrete messages over a

LAN. This means that specific addresses need not be hard coded or determined at

lDaagrarns are not usually considered "reliable" because thene is no receiver acknowledgement. If communicatia betwseen bosts

is entirely mntra-network then the umderlying protocol, in this case Ethernet's CSMA.iCD, guarantees delivery to eAch host and,

barring buffer overflow or process termination, the message will reach each process properly attached to the addressed port

47



run time and that each read will return zero or one complete discrete message

(provided the message fits within the network maximum size). However, this proved

not to be feasible primarily due to the limitations of the Symbolics' implementation of

support for TCP/IP network services. The only arrangement that worked during this

research was a pair of halfduplex stream connections, with the further limitation that

the vehicle simulator must act as the server and the Symbolics as the client. For con-

sistency, communications between Al processors also use stream connections.

The only remaining design decision for the vehicle simulator end of the communi-

cations link was then whether to have the simulator poll the incoming stream connec-

tion for input using a non-blocking read or to spawn a sub-process to continuously

monitor the connection and communicate with the main simulator process through

semaphores and a shared memory buffer to hold messages.

A separate subprocess carries the additional complexity of implementing sema-

phores and shared memory plus the computational overhead of a context switch. Al-

so, during development, when system aborts are common, special care must be taken

not to leave orphan subprocesses when the main process terminates. The main ad-

vantages are immediate response to incoming messages and message preprocess-

ing. The subprocess issues a normal blocking read on the connection, which sleeps

until input is present. This is more efficient than constantly polling. The second plus

is the ability to respond immediately to some query while the main processes may be

tied up in computation and graphics processing.

The polling approach is simpler. In fact, in APS even the initial acceptance of a

connection request is done by polling. On a single processor system, one CPU still

must run both the main and subprocesses so no real time is being gained by running

them in parallel. There may be some concern that the input buffer may overflow

between polls, which in APS happen once each drawing cycle. However, under UNIX,

the receive buffer can be made practically as large as desired (currently 40K bytes) or

at least as large as the shared memory buffer is likely to be, so the risk of overflow
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between cycles is the same. The system network daemon basically does the same

job as the subprocess, and hopefully, it is more efficient at it than user written code

would be. Tests using dummy Al agent programs which send messages at ten times

the normal rate have not produced evidence of a lost message.

Communications with the Symbolics AI agent are performed as follows:

1) Upon initialization, the vehicle simulator establishes a stream socket, sets it

to non-blocking operations, increases its receive buffer size, and creates a connection

queue as a stream server.

2) Thereafter, during each graphics cycle, the socket is polled by issuing a non-

blocking ACCEPT command. If a stream client, in this case the Symbolics, is waiting

for a connection, two stream sockets are cloned, one for receiving messages from the

Symbolics and a separate one for sending messages to it.

3) If a working connection is established, then a non-blocking read is issued on

the receive stream socket. Messages from the AI agent, comprised of character

strings with punctuation character delimiters are extracted from the stream and re-

turned as whole messages to the simulator w'hich takes the appropriate action. The

specifics of how this is implemented are contained in Chapter IV. If the stream con-

nection is broken by the AI agent, then a flag is set and the system returns to polling

for a connection instead of polling for data to read.

At the Symbolics AI agent, the path planner needs to monitor the progress of

the vehicle, independent from the vehicle simulator updates. This means that calls to

the communications system can not be allowed to wait for data. For this reason com-

munications at the Symbolics Al agent is done using the read-char-no-hang method

to read the input stream. This allows reads from the 1/0 stream to return nil.

Messages are identified and delineated by non alphanumeric characters. Non al-

phanumeric message delimiters were chosen to reduce the chance of processing par-

tial messages. This could occur if the first part of a message were lost over the

network. It is assumed that a properly delineated message is complete and correct.

49



The use of a data stream requires that the formats of the messages be known in

advance, and that each message be identified as to type. This is accomplished by the

use of non alphanumeric delimiters as mentioned above. A further precaution that en-

sures messages are not lost forever should one message arrive without its leading

delimiters is the use of different length delimiters on the front and back of messages.

The front delimiter is longer than the back delimiter. This is done to prevent a mes-

sage that has lost its front delimiter from starting a cycle of reads that could pass

over the correct first delimiter. The algorithm that receives the messages on the Sym-

bolics workstations checks for the first delimiters, and then reads in a prespecified

number of characters, based on the message type. The last few characters make up

the ending delimiter. It should be noted that the sending process supplies a null char-

acter between messages. If the ending delimiter were the same length as, or longer

than the beginning delimiter, the ending delimiter could be interpreted as the begin-

ning. Since the rest of the message is not evaluated until the ending delimiter is

checked, message traffic could remain out of synchronization indefinitely once broken.

E. PERFORMANCE MEASURES

In order to make quantitative comparisons among path planning algorithms or

human-machine control arrangements, some numerical figure of merit must be cho-

sen. For tactical vehicles travelling cross-country, some candidates are: transit time,

fuel consumption, enemy exposure, weapons line-of-sight, etc. In this study transit

time "as chosen because it can be tied directly to the terrain data base and platform

characteristics.

For each platform experiment or trial, there is a global planning time and a

transit time. In a sense, the planning time represents a fixed investment cost and

transit time operating cost. An experiment may compare total time (planning and

transit time) or analyze them separately. As an example of the type of trade-off

study that might be made, consider the current path planning algorithm used. Such a
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wavefront or breadth-first algorithm may not represent the fastest way to produce an

optimal global path. However, its nature as a neighbor-based algorithm means that

each path step is calculated only on LOCAL cost data. Then, assuming the agenda is

preserved, when a small piece of the data changes, such as the discovery of an

obstacle, only a small region need be recalculated. Its overall performance in the

presence of constantly changing local data might be superior.

This research makes no attempt to produce a definitive measure of effective-

ness. Rather a mechanism is sought that will provide a basis of comparison for oth-

ers to use in measuring the effectiveness of path planning systems.

F. SUMMARY

This chapter provides an examination of the source, thought process, and evolu-

tion of the design of APS. The development of the vehicle motion model and control

response of the vehicle simulator are discussed along with the knowledge base of the

rule-based path planner and path planning algorithms. This chapter concentrated on

the why. The next chapter will delineate the how.
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IV. SYSTEM DESCRIPTION

This chapter describes how the methodology and algorithms were implemented,

including the function and structure of some of the main programs and rule sets. Data

structure definitions along with some code listings are contained in Appendix A.

A. TERRAIN DATABASE

APS uses terrain data that is a subset of a vegetation and elevation database in

12.5 meter increments for an area of Ft Hunter Liggett, California, provided by

CDEC. This database is preprocessed into 100 meter resolution data by sampling ev-

ery eighth point and then stored in a separate file that is read by APS. Each data

point is 16 bits (2 bytes). The 3 most significant bits form a vegetation code which is
used to color terrain polygons in a shade of geen for the 3D view. If the vegetation

code indicates light or no vegetation, or no vegetation data is available, then the ter-

rain polygon is colored according to its elevation using the currently designated color

map, usually shades of brown. The remaining 13 bits contain the elevation in feet.

This eievation is usea to draw the 3D terrain, calculate normals for the lighting model,

and calculate slope used by the path planning cost function.

APS is currently limited to the 35 KM by 35 KM area for which preprocessed

data is available. In UTM 10 meter grid coordinates, this area extends from

IOSFQ41006000 to 10SFQ77009500. A basic terrain surface patch is formed by the

four elevations of the vertices of a 100 meter square. These points are not

necessarily planar. Since the IMIS cannot quickly render filled non planer polygons,

this polygon is divided along a NW to SE diagonal into two planar triangles which are

rendered as filled shaded triangles. This basic terrain patch is shown in Figure 4-1.
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The lower left (SW) triangle is called the lower triangle and the upper right (NE)

triangle is the upper triangle.

Z

N J u ipr triangle

lower mrangle 
//$

X

Figure 4 - 1 Terrain Patch

The elevation of each triangle vertex is stored, along with its X and Z offsets in

a floating point array (the upper left and lower right points are duplicated) consisting

of 72 bytes (3 X 6 X 4bytes) per 100 meter square. In addition, a surface normal 3D

vector is calculated and stored for each triangle. One square kilometer of terrain data

thus consumes 9600 bytes (10 X 10 X 96bytes). The entire 35 KM by 35 KM area

consumes over 11 Mbytes of memory. To maintain performance, only the vertex and

normal data for a 10 KM by 10 KM area selected by the user are kept in memory.

B. VEHICLE SIMULATION

1. Capabilities

The capabilities of the Autonomous Vehicle Simulator include:

• Acceleration due to changes in engine throttle (thrust).

• Deceleration due to coasting and braking.

• Change in vehicle pitch due to acceleration or braking proportional to the mag-
nitude of the change of velocity.

* Vehicle roll due to centrifugal force while turning.

• Linear steering controls with exponential steering response.

• Damped vehicle oscillations due to changes in vehicle pitch as vehicle travels
over varying terrain.

* Change in vehicle velocity due to terrain slope.
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" An autopil: that will navigate a platform along a designated path.

" The ability to handle vehicle control inputs from either local driver controls, lo-
cal/remote autopilot teering commands or remote autopilot/commander path
commands.

" Models multiple vehicles, with selectable independent views from each vehicle
representing weapon sights, commander's station view, etc.

" Multiple independent viewing axis and viewing positions.

" Multiple independent weapon system axis maintained to provide for stabilized
weapon/sighting systems.

• Utilizes graphics hardware for fast coordinate system transformations.

" The ability to sight, range, and fire weapon systems, including stabilized
weapon systems. The following platforms and weapons are implemented:
tank with main gun SABOT and HEAT rounds, open jeep. closed top jeep-
TOW jeep, truck, Cobra attack helicopter with TOW weapon, and FOGN1.

" ANSI C standard source code.

• Broadcast networking to allow multiple simulations to operate together on dif-
ferent IRIS workstations.

A complete discussion of the user interface for APS can be found in Appendix C.

2. APS Environment

The vehicle control and motion model requires an interface with its simula-

tor environment in four areas: maintenance of and access to terrain data structures:

timing; control inputs; and display of results. From the terrain data structures, it

needs the elevation of an arbitrary point in world coordinates. This is provided by the

function gnd_level. It also requires the surface ncrmals for each terrain polygon. Tim-

ing is provided by the routines in module slmtlme (Appendix A). Control inputs are

provided by reading the mouse position. reading dial positions, or receiving commands

from a remote guidance system. Displaying the results, which after all is the main

thrust of the simulation, is accomr .; ,ed bv drawterrain after the model "positions"

the vehicle for drawing and sets up the vie ing parameters and the projection trans-

formation.
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3. Graphics Drawing C le

Typically, window-based graphics programs operate in a drawing Oycle

with an I"PU'T-UPDATE-DISPLAY loop. A representation for this cycle in the vehi-

cle simulator is shown in Figure 4-2. The platform modeling routines operate in the

update portion of this cycle. They operate on the platform data structure which is then

initialize terrain, graphics, and I/O

while ( state variable
{

update simulation timer

while input in input queueI /
read queued input device

dt handle nrput

handle network input ,messages

update guide points and controls (atop1lo)

upda:e vehicle model

update v;eh:cle position

draw objects

send network update messages

Figure 4 -2 Structure of Main Drawing Loop in ei'ent-driving

passed on to the display cycle. The only parameters usually required for model rou-

tines are a pointer to the platform and the elapsed time since the last update cycle

was completed.

4. Input

As discussed earlier, control inputs can have several sources, can be set

to override each other, and can be turned on or off depending on the internal state of

the simulator. The source of control inputs is largely irrelevant to the design of the

motion model except for steering. Two ways of modeling steering correspond to two

types of physical control ,ystems. In one, the steering wheel or control device is
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directly connected to the wheels, tracks or control surfaces of the vehicle (Figure 4-

3). External course commands then must be processed into signals to a

servomechanism which physically moves the steering control just as a human

operator would manipulate it.

MANUAL
CONTROL *N.'.

COURSE COMMAND STEERING CONTROL
COMMANDS PROCESSOR ERV EFiECTOR

Figure 4 - 3 Manual and Automatic Steering Control

Another arrangement is "fly-by-wire" (Figure 4-4) where manual control

generates a signal which is perhaps one of several input signals to a steering control

system which in turn activates physical control surfaces such as wheels, tracks, or ai-

MANUAL C T
CONTROL CONTROL CONTROL

COURSE PROCESSOR EFFECTOR
COMMANDS

Figure 4 - 4 "Fly-by-Wire" Steering Control

lerons.

APS currently uses the first system. Course commands are converted in-

to a turnrate. This turnrate is then used by model routines steeringmodel and turn-

Ing-model without caring if it came from the steering wheel or remote commands.

Thus the modeling of turning is independent of the source of the turning commands.
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5. Model Update

The update phase (Figure 4-5) is actually split into two sub-phases. In

the first phase, the new velocity and course are calculated. In addition, any transient

pitch or roll caused by a change in velocity is calculated.

COMMAND COURSE
CURRENT COURSE
COMMAND TURNRAFE COURSE
CURRNT TURNRATE . ' VELOCITY

COMMAND VELOCITY MODEL TRANS PITCH
CURRENT VELOCITY TRAINS ROLL

DT

Figure 4 - 5 Vehicle Model Update Phase

Once the model has updated the platform data structure, it is passed on to

the routine update-veh_pos which "moves" the platform to its ne, location and calcu-

lates orientation angles based on the slope of the terrain. Any oscillations or

"bounce" in vehicle transient pitch angle is calculated by handlebounce. This is

based on the change in vehicle base pitch angle exceeding some threshold or mini-

mum change. At this point, an interplay exists between attempting to smooth abrupt

pitch changes between adjoining terrain patches and simulating bounce. Because the

terrain is represented by patches, the flat tops of hills or ridges that are less wide

than the terrain cell size are "missed" by the data base. Consequently, cresting a hill

and going down the other side is portrayed as an instantaneous change from positive

to negative slope as the line separating the two adjoining patches is crossed. To

smooth out this sharp transition the length of the baseline to the front of the vehicle

used to calculate base pitch was extended forward about 20 meters. This results in

the Fitch change being spread over smaller increments as the reference point moves

down the far slope as the vehicle is coming up the near side. Unfortunately this

smoothing can also "smooth" oscillations out of existence. Only experimentation
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with the constants pitchbase_dIstance and bouncethreshold can produce a realistic

compromise.

6. Platform Position and Viewing Parameter Update

APS updates the vehicle position and orientation variables whether or not

the vehicle is currently selected as the viewing platform, the driven vehicle. In MPS

the viewer's position was not fixed with respect to the driven vehicle coordinate sys-

tem. It was a constant Y offset from the vehicle's graphical center in world, not body

coordinates. On fairly level terrain this works well, but as the vehicle pitches and

rolls when travelling over rough or sloping terrain the viewpoint or eye position aD-

pears to bounce around inside the vehicle. This movement is disorienting and in some

cases may even result in viewing the terrain from underneath the terrain polygons.

One solution to this problem is simply to not draw the driven vehicle. However, the

viewer then loescs the frame of rcfcr; .- , the vehicle outline provides, especially

when the view angle is not directly to the front. A more satisfactory solution is to de-

fine the viewpoint as an offset from the vehicle origin in vehicle (body) coordinates

and transform the viewpoint into the graphics (world) coordinates required to estab-

lish the viewing pt-rspective. Such a transformation also allows the viewpoint to be

placed at an arbitrary point in the vehicle which could represent, the gunner's sight,

commander's cupola, etc. Setting the viewinlg perspective is then done as shown in

Figure 4-6 where eyex, y, z is the sum of vehicle position coordinates and the view-

perspective( fov, 1.0, 0.1, MAXLOOKDIST);
lookat( eyex, eyey, eyez,

Io(.alpx, locaLpy, Iocaipz, (Angle)(vlewroll*RTODX10));

Figure 4 - 6 Setting Projection Parameters

ing point offset in transformed world coordinates.

The IRIS graphics software also requires a viewing "target" (Iocal-px, y,

z), for the lookat perspective routine. The homogeneous transform again provides a
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means for calculating this visual target since it is simply a constant displacement

along the body X-axis of the viewer. This corrects simplifications in MPS that ne-

glect cant or body roll in determining point of view. This precision becomes important

when a weapon system is modeled because the point of view is also the point of aim.

A one degree error in azimuth caused by cant corresponds to a 18 meter error at a

range of 1000 meters. Therefore, the MPS routine update look_pos was modified to

use this procedure.

7. Network Communications

As described in Chapter InI, communications among vehicle simulators is

handled differentlv than communications with the Al agent. Messages among vehicle

simulators, whether each is functioning as a peer or a remote human commander, are

passed over the network using broadcast datagrams, while the vehicle simulator and

,he Al agent communicate using a stream.

Communication routines are divided into two levels: the APS message lev-

el and the network service level. These levels and the modules that contain level

routines are:

APS message level check-for-packets (receive)
network (send)

message-stream mant gent network_10

network system ser-vices netstreamservices

broadcastservices

a. Vehicle Simulator Communications

(1) Initialization. Two network sockets, a transmit socket and a

receive socket, are initialized for each vehicle simulator. The receive socket is bound

to an address containing the APS broadcast port number. This port number is

arbitrary, but must be unique to avoid interference with other network services such

as "mail" and "rwho" and must be the same for all vehicle simulators. In APS, the

broadcast port number is a program constant (DEFAULTBRDCASTPORT in
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network.h). An alternative method of assigning a port is by defining a "service" in the

network system file "/etc/services". The system service getservbyname can then be

used to determine the port number at run time. This method has the advantage of

allowing changes in the port number without recompiling the program should the port

assignment interfere with some other network application. However, each system

running a vehicle simulator must have the same service definition for APS. Finally,

each socket is set to BROADCAST mode, non-blocking 1/O, and has its buffer size

increased to RECVBUFSIZE (currently 40K bytes). Since the most common

broadcast message is an UPDATE packet with a size of 180 bytes, each vehicle

simulator can normally receive = 220 packets before the buffer overflows. In

communication tests, no such loss of message traffic has yet been observed.

After the sockets are established, each vehicle simulator sends a

polling message to synchronize itself with an, other already running simulators. A

response to this initialization message sets the initial 10 KM terrain box to that area

already being viewed by a running simulator.

(2) Sending Messages. Messages are sent as character strings

divided into a header string that identifies the type of message and a varying length

data string. The first character in the header string is a message token, a character

that uniquely determines the message type. The rest of a message is the formatted

output of a sprint command containing from one to thirteen fields. All messages are

built and sent by routines in module networko. This routine is called wvith one

argument indicating the type of message that is requested. Message types are

shown in TABLE 1. The function network() also contains several local static variables

which contain data used in building a message. For example, to send an UPDATE

message the routine setcnlmsgplatform(platform.polnter) 's called to set the
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vehicle then network(SEND UPDATEPACKET) is invoked to build and dispatch the

message.

TABLE 4-1 VEHICLE SIMULATOR MESSAGE TYPES

TYPE FIELDS DESCRIPTION

INTIMESSAGE Polls for other vehicle simulators.

ANS_MESSAGE x-grid, y-grid Answers INITMESSAGE and
sets origin of 10KM box.

UPDATEPACKET vehicle id, type, Updates platform data on remote
UTM x,y, course, vehicle simulators.
speed, weapon azimuth,
weapon elevation,
transient pitch, transient
roll, control mode.
external guidance.

ENDPACKET base id number Tells remote vehicle simulators to
delete all platforms belonging to
this host.

FIREMESSAGE firer x,v,z, target x.y.z, Sends a weapon system firing
weapon azimuth, event. The flight of the projectile
weapon elevation is then modeled on each

simulator.

LOCKONMESSAGE vehicle id Sends id of platfor: that is/is not
LOCKOFFMESSAGE being tracked by FOGM.

DESTROYMESSAGE vehicle id Sends message notifying remote
CRASHMESSAGE simulators that platform has been

destroyed.

(3) Receiving Messages. Since datagrams contain discrete APS

messages, the type of an incoming message is determined by matching ,he first

character of the header string with a character token. The data string is then

disassembled by a formatted string read (sscant in C) and the appropriate action taken.

This message handling occurs in module check_forpackets). Once during each
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drawing loop this routine is called. It loops handling messages until no input is

available.

b. Vehicle Simulator - AI Agent Communications

(1) Initialization. The communications stream is set up by initializ-

ing a stream socket, setting it to non-blocking 1/0, increasing its buffer size to

RECVBUFSIZE bytes, and establishing a connection queue by calling the listen

system service. The socket is then polled once each drawing cycle using a non-block-

ing accept system service. Two sockets are then cloned to handle the receive and

transmit streams and a global flag, controlconnected, is set indicating a connection

with the Al agent has been established.

(2) Sending Messages. Messages are sent as a continuous string

of characters with no imbedded "white space" characters such as spaces, tabs, or

linefeed. All numeric fields must be zero filled. Each message is preceded by a fixed

number of a unique delimiter token characters, usually a punctuation character. {,2,@,

etc.. The variable length data string follows. A message is terminated by a number

of delimiter characters, one less than at the front of the niessage. Since stream 1/0

implies an unbroken flow of data, these front and read delimiter characters serve to

identify the type of message and provide begin and end message markers at the pro-

gram level. This additional framing allows resynchronization should a portion of a

message be lost or garbled. It also allow recognition of different type messages by a

simple finite state machine. Messages to the Al agent are built and sent by calling
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routine controlmessage(message type) contained in the module network. The types

of messages sent to the Al agent are contained in Table 2:

TABLE 4-2 VEHICLE SIMULATOR to Al AGENT MESSAGE TYPES

TYPE FIELDS DESCRIPTION

INITIALIZE UTM x,y of 10KM box Tells Al agent which plaz.orm to
origin, vehicle id, plan path for and what part of
path start x,y goal x,y, terrain database to load.
simuL!ation time

UPDATE vehicle id, vehicle Updates platform data. Initial
location UTM x,y, guidance ON message triggers
simulation time, path calculation.
guidance flag

OBSTACLE obstacle vertices Sends coordinates of vertices of
detected obstacle.

CONTROL vehicle id, Sends status and control flags.
simulation time,
control code

(3) Receiving Messages. Routine check for packets() also

handles incoming stream messages by calling recvcontrol messageo. If no Al agent

is connected, it polls for a connection. If it can form a valid APS message from

characters in an internal buffer, then it returns TRUE otherwise it returns FALSE.

Messages are recognized using a finite state machine. Incoming characters are

returned to recvcontrolmessage0 by getmsgcharo, which returns the next

character in the block buffer and keeps the buffer filled as necessary by reading the

stream. If the stream read returns 0, then the client has broken the connection so the
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current message, if any, is discarded and the flag is set to begin polling for a

reconnection. Message types received from the Al agent are contained in Table 4-3.

TABLE 4-3 Al AGENT to VEHICLE SIMULATOR MESSAGE TYPES

TYPE FIELDS DESCRIPTION

GUIDEPT vehicle id, If cxtciiiai guidance is set for plat-
path point UTM x,y form matching vehicle id, then the

platform's guide point is replaced
by the incoming point. If recv-path
is set for platform then incoming
point is added to path being built.

CONTROL vehicle id, Turns guidance ON/OFF,
simulation time, recv-path ON/OFF, or
control code autopilot ON/OFF.

8. Simulation Time

It is often desirable to change the speed at which the simulation runs by

modifving the ratio between real (clock) time and simulation time. This is done by fil-

tering calls to the system clock through the simtime module. This allows, for example,

simulation time to be suspended while menus are displayed. The routines available are

shown in Figure 4-/.

9. Simulating Weapon Systems

Platforms in APS can be equipped with weapon systems by defining the

weapon's characteristics, ammunition types, and sight reticle. A platform with a weap-

on system can engage and destroy any other platform, local or remote. Figure 4-8

shows the view through a TOW weapon sight looking at an attack helicopter. Weapon

data structure definitions are contained in "weapons.h" which is reproduced in Appen-

dix A. Current weapons include tank main gun with SABOT and HEAT rounds and the

TOW antitank weapon system.
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start-simtimeo - Starts simulation time at 0.

stop_simtime0 - Halts simulation time from advancing,
i.e. freezes time.

restart_simtime0 - Restarts simtime when halted.

changesimspeed( float ratio ) - Changes the ratio of
simulation time / real time. That Is, a ratio value
of 0.3 will cause simulation to run 3 times slower
than real time, or 3 seconds of real time will elapse
for every 1 second of simulation time.

float read_slmtimer - Returns the current time since startsimtime
was called in simulation seconds.

void settimemark( void ) - sets a time mark by storing current value
of slmtimer In local static "package" variable.

float elapsed time_wreset( void ) - returns elapsed time in seconds
since time mark and resets time mark.

Figure 4 - 7 Simulation Timer Module Routines
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Figure 4 -8 View Through TOW Weapon Sight
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Weapon system data structures are as general purpose as possible, to fa-

cilitate addition of other types of weapon systems and munitions. Each platform con-

tains an array of pointers to onboard weapon systems, one of which is selected as the

current weapon. Each weapon system is represented by an instance variable which

contains data specific to that platform and pointers to class variables which contain

generic data for that type of weapon or munition. The tank, for example, has a pointer

to its weapon class variable and a pointer to the munition class variable for the partic-

ular type of round currently selected. Which sight reticle is drawn is determined by

looking into the weapon class variable of the currently selected weapon for the cur-

rently selected platform. Presently tank maii, gun, binoculars, and TOW sight reticles

are available1 .

Target ranging is also simulated for those weapons that normally have

such a capability. The tank, for example, simulates a LASER range-finder by doing a

gselect (similar to a graphic pick) on a three degree field-of-view along the firer's

line-of-sight (LOS). The select list is examined for platform identifiers, except that

of the firer, and returns the range to the closest one. This range is displayed in the

weapon sight reticle. Platforms which no weapon system, such as jeeps, of course

have no range-finding capability. They have, however, been provided with variable

power binoculars selectable from the main driving menu.

Although range-finding with a LASER happens quickly enough so that it

can be completed in a single iteratiwi of the drawing loop, actions such as the flight of

a round extend over multiple drawing cycles. In order to support such transient

events without congesting every possible drawing loop in APS, an event handler

which is called once each drawing loop was implemented. Events, such as a round in

flight, are implemented as a linked list of event data structures (described in

"weapons.h") with a common part containing a time stamp, delete flag, and pointer to

Data is unclassified hypxohetical data repreenting the genenc characteristics of the represented itern and is no( mtended to

eiactlv match anN actual system.
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a function which can process this type of event. Each event also contains a variant

part containing type-specific event data fields. Once each drawing loop thet event

handler is called. It traverses the event linked list. If an event is not marked for dele-

tion, a call is made to its processing function via the pointer, with the address of the

event record as the parameter. This allows the event processing function access to

the type-specific data. Types of events currently implemented are:

1) round in flight - flies ballistic trajectory.

2) resetsafety - timeout to reset weapon safety after reload time.

3) message - displays message on screen for set period of time.

4) splash - draw splash of round miss for specified amount of time.

5) flash - draw expanding flash at impact of round with platform.

6) bounce - varies vehicle pitch based on elapsed time since going over

bump in the terrain.

Firing a weapon in APS results in the simulation of the projectile's flight

until impact with the ground, another platform, or maximum range is exceeded. The

system assumes that the weapon system has some type of ballistic computer that

will provide elevation to the weapon based on the range to the target, type of ammuni-

tion, etc.. This allows the position of the round along its ballistic path to be computed

from a table of offsets in the Y (UP) direction, called its ballistic table, by scaling the

offset using the current range from the point the round was fired. This produces an or-

dinate for the current range. A cylindrical viewing volume is then constructed along

the LOS at the time the weapon was fired offset by the ordinate. LOS guided muni-

tions such as the TOW are processed the same way, except that their ordinate is al-

ways zero and the flight volume is based on the firing platform's current LOS not the

LOS at the time of firing. The near and far clipping planes are set to the starting and

ending position of the round during the increment of time since the last update. This

cylindrical volume is "swept" using gselect and the closest target to the firing vehicle

is destroyed, if it is hit. If no target is in the volume, the round is checked for impact
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with the ground and a splash drawing event is added to the event list. Finally, if the

round flies beyond the edges of the terrain box, or exceeds its maximum range, it is

terminated.

10. Module Descriptions

This section presents a brief description of the main modeling and simula-

tion modules.

a. Program Control Flow

Program control flow is determined by state variables modified by the

user through input from the dials, mouse, or menu system. Program structure is elab-

orated in Appendix A and the user interface including the menu system in Appendix C.

b. Supporting Routines

Supporting routines that perform a single function are too numerous

to fully describe here. A listing of all modules is contained in Appendix A. Due to the

incremental devc.,.pment of NIPS. some modules overlap in function.

C. Data Structures

The data used to model vehicle -notion is kept in the platform data

structure defined in the "aps.h" (Appendix A). The platform data structure contains

several state variables and toggles which are implemented as C enumerated types or

a locally defined Boolean type. These state variables could be combined into a single

variable using bit fields which would be more space efficient. This was not done due

to the additional complexity of accessing bit fields and because bit fields are perhaps

the least portable feature in ANSI C.

d. Turning/Steering Module

Steering is modeled using three routines:

float convertcourse to turnrate( Vehicle *platform ) Converts command
course to turnrate which can be fed to the turning model. If the platform
viewing mode is driver, the input is coming from the dials or the autopilot.
This input is in the form of a commanded course or azimuth and the turnrate
to direct the vehicle onto this course must be computed. This computed
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turnrate is stored in the cmdturnrate field of the platform record. This
routine is implemented using the following rules:

I If the difference between the command course and current course is
less than a small delta, CSEWANDER, then make them the same.

2) If the difference is less than AUTOTURNRATE, then use differenc,
as turnrate. Note that this may cause oversteer if the update time in-
terval is greater than one second.

3) Otherwise use AUTOTURNRATE.
* updateplatformsteeringmodel( Vehicle *platform, float elapsedsec,

Boolean *network_packet_needed ) - This
routine first calls turningmodel to calculate the current turnrate. It then ap-
plies the current turnrate and time interval to calculate a new course. Final-
ly, the viewing angles in the platform record are adjusted so that the view
azimuth changes with the course.

" float turningmodel( float elapsedsec,
float currturnrate,
float cmdturnrate) Returns exponential steering re-

sponse if command turnrate is greater than current turnrate. If straightening
out then centrifugal force is assisting so turnrate change is immediate.

e. Velocity Module

Consists of the routine float velocitymodel( float, C',, float slope,

float currvel, float cmdvel, float *pitch, Boolean *network_packetneeded ). This rou-

tine returns the new platform speed using methods described in Chapter III. It also

calculates and updates the transient vehicle pitch due to acceleration or braking. This

transient pitch simulates the torque on the vehicle body during sudden velocity

change as the vehicle body is constrained by the suspension system.

f. Bounce Module

Vehicle bounce due to changing terrain slope is started by routine

updateveh._pos which sets the initial transient pitch angle amplitude if there is a

change in vehicle pitch greater than BOUNCETHRESHOLD (currently two degrees).

Routine handlebounce calculates a new transient pitch angle and updates the bounce

amplitude field in the vehicle record. If the bounce amplitude has fallen below

PITCHSTEADY then it is set equal to zero,
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g. Math Module

Contains various general purpose math routines.

0 float convertnormal to slope(float normal[3]) - Returns the slope angle of
a terrain polygon in radians based on surface normal.

0 transformbody toworld( float azimuth, elevation, roll,
float dx, dy, dz,
float "eye_x, "eyey, *eyez ) - Transform body

coordinates to world coordinates.

float calc_azlmuth( float xl, float yl, float z1, float x2, float y2, float z2 ) -

Returns azimuth in radians from the positive X axis for a course from pointl
to point2.

h. Path Operations Menu Module

This module (contained in dopathops.c) contains the high level func-

tions to create and delete a path, assign a platform to a path. and toggle the display of

paths on and off. When called by selecting the "PATH OPERATIONS" option from

the main driving menu, in module do_drlving-menu, a popup menu is constructed and

displayed. If a valid menu choice is made then the function selected is performed by

calling one of the routines:

" bulldpath - Displays instructions, initializes a path structure, adds a point
to the path and redraws the new path each time the left mouse button is
pressed, prompts for a path name when right mouse button is pressed, adds
path to path list, and updates path data file to add new path.

" selectandremovepath - Displays instructions, when right mouse is
pressed uses pick to determine which path was selected, deletes path from
path list, saves remaining paths in path data file.

" assignvehtopath - Displays instructions, when right mouse is pressed
uses pick to determine which vehicle icon was selected, makes cursor into
vehicle icon, when icon cursor is moved over any point on a path and right
mouse is pressed uses pick to determine which path is selected, makes copy
of path for platform and sets platform's guide point to first point on the path.
If platform is not local sends path over network to home simulator.

This module also contains functions to p~tk and display paths:

* drawpath - Draws a single path as a black line with a blue box around :he
first point and a red circle around the goal. Paths are drawn in overlay bit
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planes so that it would not be necessary to redraw the entire 2D map each
time a point is added to a path.

* displaypaths - Displays all paths in normal drawing or pick mode depend-
ing upon its argument and returns the path identifier of the picked path.

" plckpath - Calls display-paths in pick mode and returns pointer to the path
selected or NULL if no valid path is selected.

i. Path Module

This module (contained in "path.c") is a package which contains the

low-level functions that operate on paths. The path data structure was shown in Fig-

ure 3-7. Paths are only manipulated using the functions in this module. Function pro-

totypes are declared in "pathfunc.h". Since most of these functions operate on a

specific path, most have a pointer to a PATH structure as one of the input arguments.

Path points are kept as UTM coordinates and are converted to graphic system world

coordinates as necessary. The following functions are supported:

" addpt - Adds a path point to the end of an existing path.
" addpath - Adds a pwh t!c the end of -he -ah linted list.

" at_goat - Returns TRUE if path point has the same coordinates as the last
point on a path.

• copypath - Copies path points from one path to another.

o deletepath - Deletes path structure and frees up space.

* deleteistpath - Deletes path from path list.

* delete_veh_.path - Deletes platform copy of path.

* init_path - Returns pointer to a new path structure.

* loadpaths - Loads paths from data file.

* nextpton_path - Returns pointer to the next point on a path.

* reset..platform._path - Clears platform path and reloads path originally as-
signed if any. Calls start downpath to set initial guide point to path point
nearest platform's current location.

* savepaths Writes out all currently defined paths to binary file in the cur-
rent default directory. The file structure description is contained in
"pathdata.h".

* set glldept - Replaces the platform's current guide point with input argu-
ments and discards remaining path points.
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start-downpath - Returns pointer to path point closest to the input argu-
ment point (usually platform's current location).

updateguldept - If platform is within VICINITY meters of current guide
point and that guide point has a successor, set the platform's guldept field to
point to next point on the path.

j. Autopilot Module

The autopilot works by setting the platform's commanded course and

speed to follow its assigned path. For each local platform that has its control field set

to AUTOPILOT and has a non-NULL guldept (i.e., it has a point to head towards)

the autopilot performs the following functions:

1) Update the guide point if within a prescribed distance.

2) Handles obstacles (currently not implemented).

3) Update the platform's cmdcse to the azimuth from the platform's current lo-

cation to its current guide point.

4) Sets commanded speed depending upon the current distance to the guide

point. If the platform is so close that it might overshoot the guide point then braki:ig

is applied by setting cmdvel = -1.0. The platform's course is also frozen to w),oid

turning if the autopilot is engaged Ahile the platform is near a guide point. Note that

the current implementation does not control the platform with sufficient precision to

navigate an obstacle field.

B. RULE-BASED PATt PLANNER

The path planner is implemented as three distinct levels. The top level is re-

ferred to as the path planner control program. It is through this program that overall

control of the path planner is accomplished. The intermediate level consists of the

search control program, which is implemented en a separate Svmbolics workstation.

The search control program controls access to the implemented search algorithm. Fi-

nally, at the lowest level is the implemented search algorithm. It is located on the

same Svmbolics workstation as its control program.



1. Path Planner Control Program

The path planner control program is located on the Symbolics workstation,

SYM4. It is implemented using ART, a rule-based, expert system shell. The rules in

this program control the action of all subordinate processes. There are 24 rules,

grouped into the following seven categories.

" Set up

" Communications

• Clock actions

" Vehicle monitoring

* Vehicle and Path control

• Search control

• Fact clean up

This grouping of rules is used for conveyance of explanation, and does not

necessarily have any bearing on the firing order of the rules. Appendix B contains a

listing of the ccue.

a. Set Up Rules

The location of the vehicle simulation program and the search are

variable as ,tated in Chapter 111. This requires that the user input *he location of

these processes at the start up ot the path planner control program. T,,vo menu rules,

menul and menu2. are used for this. Tne.;e in turn enable to communications start

up rules, start-iris-comm-links and start-s',m-comm-links. These communic:ations

rules open a TCP/IP I/O stream to the vehicle simulator process on • - appropriate

IRIS work.,tation, and a CHAOSNET W/O stream to the search control program on the

appropriate Symbolics workstation. Program start up is the only time any of these set

up rules are fired.

b. Communications Rules

The heart of the path planner control program's ability to monitor the

&:;,n, of other proce,,sc ()n thor n v',re ,, I,, its aIiii to rceive inlformiTion. TI-h,



information is received via seven communications rules. Two of these rules, check-

comm-links-iris and check-comm-links-sym are used to continuously check the 1/0

streams for incoming messages. These are the only communications rules in the path

planner control program that are cyclic in nature. These rules are at the lowest active

precedence level, and therefore do not cause any problem with indefinite postpone-

ment of other rules. The set up rules have a lower salience value but are only fired at

program start up. These rules are cyclic because between the two of them they either

assert facts that cause themselves to fire again, or cause rules to fire that in turn

cause these two rules to fire again. These rules continue this cyclic action as long as

there are no incoming messages.

When an incoming message arrives, one of the OVo previously mentioned rules

asserts a fact indicating the type of message that arrived. Once this fact is asserted.

one of four message handling rules reads in the message from the appropriate I/O

stream and updates the knowledge base. These rules are: read-init-in, read-update-

in, read-map-ready-in, and read-way point-in. The messages read in are as follo',,s:

• Vehicle initialization message

* Vehicle update message

0 Search map ready message

• Incoming wavpoint message

c. Clock Rule5

Each vehicle following a path computed by the path planner has a real

time cluck associated with it. The vehicle's clock is initially set to the time contained

on the initialization message. This is done via the set-clock rule. When subsequent

messages contain a time the vehicle's clock is reset to the message's time u-,ing

reset-clock rule. If no messages arrive over the networks the veh.icle's clc.k is

updated via the update-clock rule. This last rule enables the path planner controi

program to calculate a projected new position for the vchicle.
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d. .cle Monitoring Rules

When a message arrives carrying vehicle update information, the up-

date-vehicle rule modifies that vehicle's schema to reflect the new location, course,

velocity, time and guidance mode. If no message arrives to update the vehicle's

record, the update-clock rule gives the vehicle's delta-time fact a value. if the value

of the vehicle's delta-time fact is positivo the chauge-lo6;nn rulc calculates the

distance traveled, updates the vehicle's location, resets the vehicle's delta-time fact

to 0, and indicates to the knowledge base that the vehicle has moved.

e. Vehicle and Waypoint Control Rules

When either the update-vehicle rule or the change-position rule fire,

the knowledge base is updated :o indicate that the vehicle has moved. This change to

the vehicle's schema within the knowledge base fires the check-for-new-way point

rule. This rule calculates the vehicle's current distance to the vehicle's current way-

point. If the distance to this waypoint is less than 200 meters, the vehicle's control

schema is modified vith the fact, (new-waypoint yes). When the knovledge data-

base contains the control schema for a vehicle with the fact, (new-waypoint yes), the

send-new-waypoint rule fires sending a new waypoint to the vehicle simulator. In

this implementation, every other waypoint is skipped to mimic more closely the hu-

man commander's capability of skipping over 100 meter grid squares in his path plan-

ning.

f. Search Control Rules

After a vehicle has been initialized in the path planner control pro-

gram's knowledge base, the load-map rule is fired. This rule tells the search control

program to load a 10 KM by 10 KM map, with the specified lower left hand corner's

UTM coordinates. After the map has been loaded and the search control program

sends a message indicating that the search map is ready, the start-path rule fires.

This rule gives the search control program the start point, goal point, and the vehi-

cle's ID.
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g. Fact Clean Up Rules

In order to prevent false firing of rules, used facts and schemas are

cleaned out of the knowledge base whenever possible. The clean-up-iris-msg and

clean-up-sym-msg rules clean up unclaimed waiting message facts. These facts are

asserted by the check-comm-links-iris and the check-comm-links-sym rules when

there is a message out of synchronization or spurious characters in the I/O stream.

The clean-up-waypoints and clean-up-vehicle rules are fired when a vehicle goes

out of guidance mode on the vehicle simulator. These rules remove all references to

the vehicle from the path planner control program's knowledge base. This ensures

that the next time the vehicle requests a path, an old path is not given.

2. Search Control Program

The search control program can be run from a;,y Symbolics Aorkstation. ex-

cept SYM4 "here the path planner control program resides. The search control pro-

gram directly monitors the search algorithm and keeps track of which vehicles have

maps and paths. The search control program receives two types of messages from the

path planner control program. The first message requests that a 10 KM by 10 KM

search map be loaded into a map array. This message specifies the vehicle nd the

UTM from the lower left hand comer of the 10 KM by 10 KM area to be searched. The

seccrd message requests that an optimal path be found from the start to the goal.

This n-icssage specifies the vehicle, the start point's UTM, and the goal point's UTM.

The map-array is a 102 by 102 grid. The size of this array is chosen to allow a search

map with a resolution of 100 meter squares to be loaded into the map-array, including

a border of non-traversable cells, to bound the search algorithm.

a. Loading"

When a message is :eceived that requests a map be loaded, the

search control program checks to see if that map has ever been loaded before. This is

accomplished by first converting the map UTM and vehicle ID information, contained
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as strings in the message, to LISP symbols and stored in veh-map and current-veh.

The *maps* list is then checked to see if the newly generated map symbol is on the

list. If the symbol is on the list, a message is sent to the path planner control

program indicating that the map is loaded and ready to be searched. Alternatively the

search control program builds a map-array with slope data from the data file used by

the search algorithm. Finally, the symbol value of veh-map is then stored to the

symbol value of the symbol stored in current-veh. The symbol value of current-veh is

then added to the list *1.ehs*.

b. Searching the Map

After the map is loaded, the search control program receives a mes-

sage requesting a search be done for an optimal path. The inessage received contains

the vehicle's ID, the desired path's start and goal points in UTM coordinates, as well

as the map's lower left hand comer UTM coordinates. The UT*I coordinates are con-

verted to coordinates used by the wavefront search algorithm. The %vavefront search

algorithm is called with the appropriate map-array selected from the *vehs* list. The

returned list of points is converted back to UTNI coordinates. During this conversion a

random number generator is used to move the waypoints around inside their 100

meter by 100 meter grid. This is done to simulate the commander's selection of a path

from a low resolution map. Since the goal point may be a specific p,_i::. i, >, appcnded

to the end of the list. Each waypoin. is also tagged with the requesting vehicles ID

and a sequence number. The sequence number is used by the path planner control pro-

gram to keep track of waypoints.

C. Returning Waypoints

Waypoints are sent to the path planner control program one at a time

for each path. This is accomplished through the send-waypoints function. The function

is sent the list *wave-paths*, every time the search-controller function cycles

through its do loop. This list, that is sent to the send-waypoints function, contains, as

separate lists, the remaining wAaypoints for every vehicle that has reuuested a path.
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Each list is stripped of the first element, and this element, a waypoint, is sent to the

path planner control program. This cycling continues until all of the waypoints have

been transmitted.

D. SUMMARY

This chapter contains the description of the implementation of APS. The most

salient modules and structures of the vehicle simulator are described with specific ex-

planations of key code fragments and routines. The rules and control flow of the path

planner is also described with a thumbnail sketch of each family of rules. This chapter

explains how APS works while the following chapter deocribes the results of running

the system.
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V. SIMULATION RESULTS

APS achieves a large part of its research goals. A platform, depicted with a fair

degree of realism, can be guided along a path, which is calculated in real-time, to its

goal. However, direct comparisons of human and machine path planning are not pos-

sible due to a bottleneck in communications l:tween the vehicle simulator and ma-

chine path planner. Also, due to time constraints, some capabilities were not

implemented. The most important shortfall is local obstacles and obstacle avoidance.

A. VEHICLE SIMULATOR

The vehicle simulator achieves all the design capabilities listed in Chapter IV.

Most importantly, it is able to support navigation of a platform along a designated

path, under various combinations of manual and autonomous control. The path can be

designated by a remote human commander or an AI machine. The remote commander

can also turn the platform's autopilot and external guidance controls on and off, even

while traversing a path under AI agent control.

The network communications supports connected multiple vehicle simulators

with real time interaction supporting command and control and combat "dogfighting"

capabilities. Simultaneous control of multiple platforms by different sources was dem-

onstrated allowing local control of some platforms while others are controlled remote-

ly by the AI agent.

The current vehicle simulator drawing cycle speed hovers near 4 frames a sec-

ond. This speed produces jerky scene changes on the visual display and makes pre-

cise vehicle control difficult. However, it remains sufficiently realistic to support

navigation over calculated paths. Run-time analysis indicates that steady state per-

formance is bound by graphics operations and not computational load1 .

1 CPU utdization %as 50 -70% with the CPL , %tting predomnately for graphics calculauuns or dra',ktrg.
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B. PATH PLANNER

Two key research goals of the path planner were to provide an easily under-

stood interface between the vehicle simulation and the path planning algorithm, and to

provide the mechanism for easy integration of search algorithms at the control inter-

face level. The Al path planning program developed for this thesis has been tested in

real time. The path planner supports the major goais of this thesis. It provides a func-

tional interface whereby different search strategies can be evaluated and tested

against a human planner. The AI path planner provided optimal paths for the driver of

the simulated vehicle, using a wavefront search algorithm.

The path planner spends between one and one half to five minutes finding an op-

timal path. After the path is found the path planner control program begins returning

vaypoints. The issuance of waypoints along the path is not sufficiently fast enough to

compete with the human planner. This is mainly due to the fact that the human plan-

ner issues an entire path to the vehicle at the beginning of the path, while the AI path

planner is only allowed to issue one waypoint at a time. The Al path planner must ap-

parently wait on buffered network communications. A "work around" exists to force

the Al path planner to send the entire path as soon as the path is found. This howev-

er, would remove the path planner's ability to react to changes in the terrain as the

vehicle travels along the path.

A rule-based path planner control program, written in ART, controls the flow of

path requests and the issuance of waypoints. More than one simulated vehicle can be

guided along a path at the same time. The path planner control program allows multi-

ple vehicles to be guided as long as each has a unique vehicle ID.

T.e. randomly generated offsets to the waypoints that are used to Simulate a

human path planner's waypoint selection within a one hundred meter square grid do

not adequately simulate the way a human path planner selects waypoints along a

path. The human planner generally chooses a path that transitions smoothly from grid

to grid, except where demanded by terrain. The use of random numbers to select the
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position of waypoints within the designated one hundred meter squares causes these

waypoints to be unnaturally placed along the path. This can cause the simulated

vehicle to make sharp changes in direction for no apparent reason.

The skipping of waypoints to provide a more reasonable next waypoint for the

driver only appears natural in terrain that is typified by gradual changes in slope.

Where the terrain changes slope frequently and drastically, the skipping of waypoints

can cause the vehicle to traverse areas cf extreme high cost. This occurs when the

path planner has planned a route around a finger of a hill, but the wapoint avoiding

the finger is skipped.

C. COMBINED SYSTEM

Obstacles, obstacle avoidance and local path planning "ere not implemented.

Therefore, path transit time was purely c function of vehicle speed and an actual opti-

mal path directly calculable from the global terrain data.

Several trials were run over identical routes (2-7 KM long) under human and AI

agent path planning. Human path planning is relatively quick and accurate when there

is distinctive terrain such as steep hills and flat valleys: that is, when the best route

is fairly obvious. When terrain is mixed and the trade-off between going straight oer

steeper terrain or making a detour is more subtle, the visual decision becomes more

difficult.

Since there were no obstacles, most trials Aere run Aith tht: autopilot. The au-

topilot always tries to maintain maximum speed, so a correctly calculated optimal

path traversed on autopilot should result in a minimum transit time. Unfortunately, di-

rect comparison between human and AI agent planned paths was not possible due to

the inability of the Symbolics system to keep up with the vehicle simulatoi. Instead

of the AI agent updating guide points when the vehicle was within 200 meters, so

that there would be no break in speed, the vehicle would often reach a guide point and

come to a stop before receiving the next guide point. When such a delayed guide
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point was received, an additional time penalty was incurred as the vehicle simulator

accelerated up to the maximum speed allow,'ed by the terrain. As a result of this delay

in receiving new guide points, transit times under the Symbolics Al agent control

were 2-3 times longer than transit times for human planned paths. Consideration

was given to working around this problem by having the Al agent send the entire path

once calculated. However, this would eliminate the capability for the AI agent to dy-

namnically moify the path, based on obstacles or other detours, so this option was re-

jected.
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VI. SUMMARY AND CONCLUSIONS

A. LIMITATIONS

1. Vehicle Simulator

The APS vehicle simulator is currently hmited in the following ways:

• Applies only to tactical vehicles travelling off-road.

• Models single gear transmission vehicle for acceleration.

• Operates in a single terrain database.

" Has simplified vehicle-terrain interaction model.

* Simulates joystick driving controls with a mouse.

There are some features of the vehicle simulator that don't work correctly

or fail to work under certain special circumstances. A list of such fea'ures. the nature

of the fault and all other known bugs is contained in Appendix D.

2. Path Planner

The Al path planner is currently limited in the follovking a

* The path planner does not take into account local ob, ,cle avoidance.

* A vehicle can be run on an Al generated path only c ":e.

* Only one Symbolics workstation is available to run the path planner control
program written in ART.

* The terrain slope data file must be preprocessed into the correct for-nat.

* The planned path is limited within a ten kilometer region.

B. AREAS FOR FURTHER STUDY

The most pressing need for further development is to remove the bottleneck at

the Al a-ent end of the communications and to add obstacles and obstacle avoidance.

Breaking the path planner's message processing logjam would allow direct

comparisons between the actual transit time of human and machine planned paths, a

major goal of this research. Obstacles would add the global-local dimension to

functional assignment trade-offs between human and machine planners. another
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unexplored area. Other areas for further study lie in increased realism and added

functionality for the vehicle simulator with multiple algorithms the focus for the path

planner.

3. Vehicle Simulator

The most fruitful areas for further study of the vehicle simulator are simula-

tor realism, graphics performance, local autonomous operations, and program struc-

ture/software engineering issues.

a. Program Structure / Software Engineering

The vehicle Simulator program consists of =37,000 lines of source

code in 238 files. About 7500 lines aie pure drawing code, that is. polygons and fig-

ures. The majority of the source file,, contain a single function. This flat program

structure in such a large program doesn't provide the modularity or encapsulation nec-

essary to manage the rapid modification and maintenance necessary in a system sub-

ject to the constant flux of research. For example. to add a new platform type, say an

Armored Personnel Carrier (APC), would necessitate modifying more than 20 files,

even if its graphical object definition, material definitions, and vehicle characteristics

were already available. A requirement to modify the platform modeling or control for

this new v' Tcle type would entail even more extensive and treacherous changes.

An Object Oriented Programming (OOP) Language would provide an

order of magnitude simplification of the program structure and code. Encapsulation

would limit the effects of code modifications reducing debugging and retesting of work-

ing components ensure the containment of side effects. Inheritance would eliminate

duplicating code that performs essentially the same thing but in slightly varying

ways. For example, this would allow each platform to be an instantiation of a general

class containing methods for control, modeling, and display. These methods would

then operate on class and local data structures to provide the required function.
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Since the vehicle simulator is written in C and currently C seems to

have the most thorough and efficient interface to the SGI graphics library, a C based

OOP language such as C++ or ObjectiveC would be appropriate candidates for such a

conversion, with a low risk that performance penalties might eliminate its advantages.

Another alternative is Ada. Encapsulation and inheritance can also

be implemented through Ada "packages". In addition Ada is expressive enough to

serve as a program design language (PDL) and is, after all, the DoD "standard" lan-

guage.

b. Realism

Current research at NPS has produced some capabilities that could

enhance realism without a large performance penalty. The realism of the 3D depiction

of terrain can be improved by increasing the resolution of the terrain data. This

shrinks the size of the near view terrain o)olygons making them seem more natural. In

addition, the terrain display could be made more realistic by adding "features" such as

roads, structures, lakes, and vegetation. Winn and Strong [WINN&89] have demon-

strated a terrain drawing system that, utilizing IRIS hardware support, increases the

terrain resolution, helps realism through better shading techniques and boosts perfor-

mance. They also developed a real-time line-of-sight system that could be useful as

a alternative or additional cost function for path planning. Adoption of a standard

graphical object definition language such as Pixar's Renderman or Object File For-nat

(OFF), the language developed at NPS [:UNSON89J would create access to a

large library of realistic images of platforms and other objects.

Vehicle realism could be enhanced by including the following features:

* Multiple gear transmissions.

" Realistic slope effects.

• Sound.

" Different model constants by vehicle type.

* Adding vehicle stability effects; i.e., turn over or crash.

• Energy'Fuel consumption.
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c. Increased Capability

APS is cuirently limited to preprocessed terrain data for one 35

square kilometer area of the world. Drummond and Nizolak [NIZOLK&89] in FOST

modified the original MPS terrain representation system to accept standard format

DTED files, available for many parts of the world.

Additional path planning cost functions, such as exposure to enemy

observation, energy or fuel consumption, tactical maneuver advantage, etc., could be

used as alternate or combined figures of merit to evaluate the quality of the product of

the path planner in differing environments.

The trafficability model could be expanded from a smple function of

slope magnitude to consider soil conditions, vehicle traction, and anisotropic slope ef-

fects such as those contained in the vehicle-terrain interaction model of Ross

[ROSS891.

The unimplemented simulated vision system, planned to provide in-

put on local conditions to the obstacle avoidance system, \as modeled after the laser

terrain scan;,ing system of the Adaptive Suspension Vehicle [BIIHARI&89: pg 611.

There is an interesting interaction between the range and resolution of the vision sys-

tem. the speed of the obstacle avoidance process and the maximum safe speed of the

vehicle. Simply put, the vehicle cannot safely go faster than its ,ensing and naviga-

tion system can react and respond. Were local obstacles and obstacle avoidance im-

plemented, this simulator could be used to compare the overall performance of vision

systems by varying the sensing system parameters: range, resolution, field-of-view,

and speed- and then navigating real terrain.

d. Performance

Vehicle performance in terms of frames per second is of concern in the

vehicle simulator only insofar as it effects realism. Other researchers at NPS have

looked specifically at performance and found no magic algorithm that promises orders

of magnitude improvement due to ,of, are change, IFICHTN&SS]. Th. does not
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mean that performance comparisons are unimportant or that efficiency car, be ignored,

simply that performance is not directly germane to this research.

4. Path Planner

Two key research goals of the path planner used in this thesis were first,

to provide an easily understood interface between the vehic:X simulation and the path

planning algorithm, and to provide the mechanism whereby search algorithms could be

easily interchanged at the control interface level. This implementation of the path

planner is a prototype that needs to be refined and expanded. Aieas of research *hat

would provide significant improvements on this study are as follows:

* Incremental route planning

* Selection of route planning algorithms depending on requirements

* Comparisons of expert system shells

* Comparisons of search algorithms using real terrain data and simulated vehi-
cles

* Improved communications

a. Search Algorithms

The wavefront search algorithm used in this study is wxell understood

and provides a standard by which other search algorithms can be judged. There are

many other algorithms available that provide capabilities unique to each. The decision

to Use a partilular search algorithm may be based on the constraints of the path and

mission. An area for further study is to select appropriate search algorithms, depen-

dent on the terrain and mission to be planned. Another area of study is the use of a

preprocessing algorithm that would allow the vehicle to start along the path before

the path is completed and still get reasonable results.

b. Expert System Shells

The path planner was implemented in ART which provides a high lev-

el symbolic programming environment that allows predicate representation of rules.

This representation allows the path planner written in ART to be understcod by any-
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one who has a grasp of predicate logic. ART however is not currently supported on

the next generation of Symbolics workstations, nor is ART code easily converted to

some common language and then transported to some other LISP machine. This last

area of research is particularly interesting as graphics machines are beginning to in-

cot porate LISP processors as an integral part of the architecture.

c. Communications

The path planrr has not been able to keep up with the vehicle simu-

lation. There appears to be a problem with the buffering of messages in the Symbolics

workstations. The path planner could also be improved by the addition of algorithms

that would check for the most recent update message instead of filtering down

through the messages that have arrived and backed up in the buffer.

C. SUMMARY

APS provides a testbed for the study of real-time path planning and control

stratege., and Aig :., ithout the cost of building actual hardyare. It serves as a

bridge between the theoretical study of a simplified abstract problem to applied re-

search producing concrete performance under realistic conditions. The conclusions of

this stud, show the feasibility and acdvantages of such as systern in settling perfor-

mance debates with empirical results.

89



APPENDIX A. VEHICLE SIMULATOR MODULE DESCRIPTIONS

A. DATA DESCRIPTIONS

Data structure definitions and program constants are contained in C "header

files" which normally have an "h" suffix. A list of all APS header files is contained in

Table A-1. The main data structures used in APS are contained in "aps.h" (Figure A-

1) and "weapons.h" (Figure A-2). Global variable declarations are contained in

"global.h" which is included at compile time in the APS main module "aps.c".

B. MODULE ORGANIZATION AND PROGRAM CONTROL FLOW

The top level APS function maino (Figure A-3) is contained in the file aps.c.

This module initializes the system, nns the simulator bv calling evento, and cleans

up during program termination. Module event() (Figure A-4) initializes the

simulator, displays introductory screens, gets a user selection of a 10 Kilometer area

,o ;,ork in, handics the inain iienu selections and calls either of the t,, main drawing

loops: event_driving() (Figure A-5) or event_flyingo (Figure A-6). If the user

selects RETURN TO .%LAIN MENU from the driving menu or the platform he is

operating is destroyed, control returns to evento, the 10 Kilometer 2D map is

displayed, and the main menu is presented to renew the cycle. If the user seiects

EXIT THE PROGRAM from the driving menu control then the program is terminated

by returning control through event() to mainO. The remaiing modules contain

functions which are either sub-packages under one of the main routines or general

support functions that are called to do some task from ,e,.a, pi, cs. T;,,.,c

modules, the functions contained in each one, and a brief description of what they do

are listed in Table A-2.
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TABLE A-I APS HEADER FILES

aps.h Main global data structures uid constants.

Cobradata.h Cobra object data.

Cobra insidept.h Object data for Cobra inside view.

colorscheme.h Program RGB color array indexes.

controls.h Constants for controls.

event status.h Main loop state definitions

files.h System data file names

flamnedata.h Object data for wreck bumuiig jeep flamieN ).

global.h Global variable declarations.

gundata.h Tank main gun object data.

jeepdata.h Jeep object data.

legend.h Positioning constants for legend windows

lightcons.h Material definition constants.

lightdefs.h Lighting array declarations.

macros.h Copy of system header file that defines C

macros without bug.

lain_rotordata.h Object data for Cobra main rotor.

math utility.h Mathutility function prototypes.

missiledata.h FOGM obj,.ct data.

Mrotorinside-pt.h Object data for tip of main rotor seen from

inside Cobra cocki "

network.h Network message dc.. ters, types and

formats.
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TABLE A-i APS HEADER FILES - CONTINUED

networkservices.h Network function prototypes.

openjeepdata.h Open jeep object data.

pathdata.h Path data structures definitions.

pathfuncr , h Path function prototypes.

popups.h Popup menu names and return values.

rollerdata.h Tank roadwheel object data.

Rotdat.h Cobra rotor rotation rates.

Tail pipe-data.h Cobra IR suppressor object data.

Tail_rotordata.h Cobra tail rotor object data.

tankdata h Tank object data.

terrain.h Terrain 3D display constants.

tuedata.h Wheeied vehicle tire object data.

Tpipe-inside-pt.h Cobra IR suppressor object data.

trackdata.h Tank track object data.

trackdata2.h More tank track object data.

Trotor mside-pt.h Cobra tail rotor data.

truckdata.h Truck object data.

turitdata.h Tank turret object data.

veh-rnodel.h Platfoml motion modeling constants.

weapons.h Weapons system data structures and

constants.
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#include '"fmclient.h" ,~inherit font manaor de-:finifio ns

#include "pathdata.h"

/pathdata..h required because there are ptrs to paths in hil

data structure.

#ifndef NULL

#define NULL 0

#endif

defineF f7.r manipulating the terrain data file

*,de f i -e E L E'. !-A $-K Dlf

#define RD

#,define W 1.

- efi-nes fc r -:.Iygcn cr ~tcn
4-4efine X X :cint

#define Y 1

#defi;ne Z 2 /* Z
#Aefire L C *LOWER- triarncle

*7eln 1 'IFFER triangle

' defirne5 fo r p o!Yg~on Corientation *l

4 tIAXCCCFe 80

#definie MAXL, :)KD!TTF 228D.

,' define rna:-irnum size for pickbuffer ~
#define PICK BUFFER -SIZE 512

7,* define default rancze for ranoefinder ~
#define RANGE DEFAULT 9999

Figure A-I APS.H Main Header File
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,defines for con%-ersions *

#define TO MPS 0.447039

#define FEETTOMETERS 0.3048

,'* defines for useful constants '

#define TENTHKM 100.0

#define TWOTENTHKM 200.-0

#define HALFKM ~ 500.0

#define ONEKM 1000.0

'dcefine TWOKM 2000.0

#diefine TENKM 10000.0

#detine iv XL2Y-!Z 5042.6 - 5942.6E meters I 95' feet-

#define MAXELEV: 1134 2'1134 meters

#define MIELEV 0 meters 9 feet'

#define NUM1-XGFI1DS 100

# de f ne NU'I-7GRIDS ion

#define XDATA_-PTS 101i

*Jefine D-,ATA PTS, 121l

#diefine TANFK3N1PHT 1 .f- E,12

#define TRUCFGNIDHT 1. 6764

#dJefine jEEFGNDhT

#define 'F FEEPGNL'HT q

#diefine KWDH

#Jefine ATFHELHT 1.0

#cdef-,ne riAX.E H ?9

Maxim n'irher -f LQC,'AL plat fc-rmls all- weA'

#define MAX'EHNTIMBITS 10

//* Number of bits to shift host id t make rccm. f--r !AXVEH

ids */

#define VEHIDMASK OxFFFFF

,'* Mask to Qet positive local base platform id ~

#define M-AXDEFAULTS 9t#define FOGMINITHT 50.0

Figure A-1 APS.H Main Header File - Continued
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* defines for miscellaneous trig operations

#define QTR PI 0.785398163

#define HALFPI 1.570796327

#define THREEQTRFI 2.35619449

#define PI 3.1415926-c4

#define FIVE QTRPI 3.926990817

#define THREE HALVES PI 4.71238898

#define SEVEN QTR FI 5.4977871

#define TWJ'I 6.283185307

#define RTOD 57.29577951

#define RTOD X 10 572.957'951

#define DTCR C.017453292

/ * Jefines for :urszr relateJ stuff *,

#define ARRW 0

#define TANKC2URSCF. 1

dJr-fine TPVC? '"F

#define KE 'S F 

#define ,PE =JFCTrPS-, P

4define C- B -A .... F.

#e'fine iF S AP --'

# Je 1-e - Z-(' F - ?

#*efine B 2-- 7F S -Fi

Sef' ne - LANK UF.S'I'F i

#define HR3LA ' Ir

#define STEEF2U
' FS i

* platfcrm tyFes *,

#define NTfr.EHTYFE S 8

#define TANK 0

#define TRUCK 1

#define JEEF

#define FDGM 3

#define WRECK 4

#define :FENJEEP 5

Figure A-I APS.H Main Header File - Continued
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#define TOWVEH 6

#define ATKHEL 7

/* upper limit on weapon types per platform *

#define MAXWEAPONS 2

#define MAX RDTYPES PER WEAPON 2

/* defines for the a~rows drawn on the 2D terrain map

#define ARROW LENGTH 30.0

#define ARROW WING LENGTH 10.0

#define ARROW WING ANGLE 25.0

'* defines fcr window ids *,'

#de fine BILLEIAR[WN 0

#define -1AFWIN 1

Odefine MENUTWIN

#dJefine NA%7W IN 3

'fine i'IWIN 4

';':vercraw color jefines

#define :OEAFT:VEFDFAW 0

#define BLA :KYERDRAW 1

#efine P.EDCVERDRAW I

#define BL11EC'.EFDFAW 3

", defines for netwcrkin, * '

#define FATKET SIZE 512

Data type definitions ......

typedef float time f; 7* time, in floating point seccnds

/* enumerated variable to indicate which viewino mode drien .ehioe

is in *,'

typedef enmm { normal view = 0,

driver,

binoculars,

wpn sig-ht } Viewmodes

Figure A-I APS.H Main Header File - Continued
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C ef mv~uer a t e t\'pe fc' *~a I -.-a L-,aL Le i:i I i -a'

typedef enun f-MANUAL 0,

AUTOPIL(OT ConItrol type;

typedef enum I LOCQAL =C, NET I'.'eh-wnier; , 'ri iur. cf 11- fr,

I 'a2 yr r' !tW k

typedef en,= OFF QCN JT:e'j-ile: Iiji-ales whet herl

d ek ef initc~ fr L Ftl -lIat' a3 s t r 'Iul

i t nIet Ai: * ELATFC'Ft! :L N''MEE P F NT;> P 'L'

shr .~ F I IP 1£ ItIFPEF F, F TAF ;FfPIN-

Vehowrier :W 2er in -,3+1-F whet-her Fla, f M S is --3

Tccri Le e:t '4.uidan e, I no iisate s whet her e::ter nal j,1n

~ ~ t icr a tr El

'qh rt "I F LA fFO-FI.I TYPE *

Co ri d; X TR-AN$-LATI:-N*

(cord *, Y TRANSLATIO-N *

Coord z ' Z TRANSLATIO-N ,

double u tm-:.:

Utm-y; *UTM Coordlinates of platform to me+ eL

float ose; *veh heading, (rotation about Y ax:is)

from positive-- X-axis, in radians. Must

be conc:erted to compass deirees for *

Figure A-I APS.H NMain Header File - Continued
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floDat ecdose; * esiredl ( li4reotel - eo-I r:s

f loat turi:Ir at e; *psi 1< rrn oot rate

flocat indt tu rrra t e; * esired psi dot - ether manually 4

throuaih dric.ino cocntrol-s or. calo-ulated

when -hanco -,f courseoere-e f r m

remo-te controller.

float base-pitc-h: * Ic pitch tilt) around Z a::sdur

sloDpe.

z1 at trnsF 1 rto1; *t ratosI :-' -oh_ 1 pt oh f f set ue to,-

fla, bar rol web r -am r-iK a::o -a-

3- ~ ~~ ~ ~ - -z :7- z: a a

l-a -.- I w -3--z - C S. V'- e C I r M 11Z r

o at -m n 4-. e : a 3 " - l .' :late- -I I. * 2 -

fl-a 1r~r wal f::rm c-t aerivotanh,.t raiano - Sri

float~ e-*-ar t-lwer-- .Anilie o ifewfrnc : 7:m

fiam-e-oe;vewe: s aelerati:n antd an4ti-.edfee'-

flaat cccl:n~ t'L--7 newEi P we _ e!

pliiaormv v lutef- iby -an otie olrrt r 11r e

Figure A-I APS.H Main Header File - Continued



as a braking factor, ran'ne -1. -.

float alt; '* ALTITUDE IF IT IS A FG-M MISSLE

Boolean trackflag; 7 IF TYPE IS A GROUND PLATFORM THEN .

• FALSE = NOT BEING TRACKED *"

•~ TRUE IS BEING TRACKED */

/* IF TYPE IS A FOGM MISSILE THEN *,

FALSE = NOT CURRENTLY TRACKING 7

TRUE = IS TPACKING

struct vehicle *track; /* IF TYPE IS A GROUND PLATFORM THEN * '

/ * IT IS A POINTER TO THE FCGM, OTHEPWISE *

* IT POINTS TO THE GROUND PLATF-P ',

WAFNING: Follo.:ing is ANSI C "incomplete strictue .efiniti=n" f

' ilInt eJ in wea-ons h. . S: c -. rI Sie - t

n:t t- sjn.:rtej in ncn-AFSI 7 compilers.

struwt wea.cn record *wpnptr[IlA-<WEAPO.JS] ; * A'AILAELE WEAi'AiS

rer. :er! wn seleeij: "?FENT WEA. N

FiLA s :,nainin? pcinter t: assncited rath and the :rrent

g i jit Lein, use i t: na.- ate ;ehi"!e.

A7. L! ath;

-ve
i !- *next; NEXT NCE IN THE LIST

Tyl lnfini-: f-r firej weap>3 r eve~nt

typ ele f nnt : t I

int firer id;

lc-rd firedx, firedy, firelz:

:cord tgt x, tgt_y, tgt_z;

float wpnaz, wpnelev;

I FIRE EVENTS;

/' declare extern functions (alphabetical order ) ;

ectern flicat aicsine();

Figure A-I APS.H Main Header File - Continued



e...t e rrn fl1o;a t .calcdistance ( Czoo:rd -:l, Co-crd yl, zciA:,

)crd x2, Coord y, zorc

e:,:tern vodcenter-strinournap( char *str, lbonoa linenr,.,

ext.e rn v --id center strina menhi( char *-str, long lin-nain

extern float compass-degrees-to radian angle ( fltoat deg

extern float convert to-dec-hro;

ex:tern short convert to-hr-min()

extern time f elapsed_time wreset (vcid);

entern vehicle *find-platform( int netid ; in

check-fcr-packets.c */'

extern float mi level ( Ccord xCoord z

ext em r n nuses :-reentcitm ( sho rt sx-, sho rt sy,

douable ut , ''jhle *utry,

~'~' * sy,

s hort wiIiw I

-f I

§ I a 1' -s a no e mas J e-e:e s §1 o

-ra-iians r1

f'- , f --a anileiflcC: .LSsin

er~in In~r e o s 'r (ron ) h:
e:: CeP n.: t

e.::-ern cco *e cdctp

ext e rn -i~ e -.eomai ()

* declare -. ery coinmnon global variables*,

extern Vehicle *vehlist, *vehlistend, *driven;

e~xtrn Boolean networking;

extern mnt color scheme inde,:;

Figure A-I APS.H Main Header File - Continued
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e.xtern int a uidance-sir soalI;

ex t ern float eye-positio-n [W-1rEEHT'YPESi 3
, o)f f set o f eye fro center if -.-eh

extern 1long centerx, centery; ,* s--reen c:iord of center- of MAP',IN ~
extern Boolean conitrol cor.nected;,'* flaa indicating remote process is

coCnnected to ser%,er.

7Font handles - Initialized ini initiris ~
extern fmfonthandle Helv, HelvE-, Times~m, Times~inE;

extern fmfonthandle scaled TirnesRm, scaled! Times~jnE,

scaled Hel- - scldHl-P

I-lake TUTM coo-rdinates of lo:wer left corner of10 KM Volba

e:t e rn d:I~ enrv: L: LLtektc -

* cord of Lower left o-f z:oeI t::

ex:te rn d''i ut1e zcm LL :-,z-,e LT ,-

Figure A-1 APS.H Main Header File - Ciontinued

-ALLEE' BY

CALLS

T EF IE D 12 14,qQ

FERSCN 1ill Te t eo

PTTR P' S E Cnt-3i ns5 r e:r ar n yr j 1 i 1l 1 cS f r we,3 F -1

arruni t i cn t ype s, a nd s Ig re ie 3 fr we ay--ris sy s tem o. T'Ses some

types from MPS.H so it must f~~w i nl~estatements.

Sight Types

#define NORMAL C,

#define MiTANKMG 1

Figure A-2 WEAPONS Header File
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#define BINOS2

#define TOW 3

#defire DRAGON 4

#define IFVSBT 5

#define IFV HEI 6

#,efine 17V TOW 7

#define COBRATOW 8

#define COBRA20MM2 9

#define APACHEHF 10

#define APACHE-25 11

#:Iefine TANKFF: FE 1,1E.:L 6.

.Peloal time for -7eneri- tank y-m-

--ef:ie auV ai A3--F T t, -t 1-erst~ecti-e wlhe'-ltq iL ~

.2) dez-irees or 6 mils

D -iA -; F E: -- T f-1.T

#define SPLASHDURATION 4.0

*H;- rr to display tazroet miss ~r dsp 13sh*

*-Aefine FIRE:N'7 TELIINC I'l",-

an,3rie increments in f-rin~i tables*

#Je f ne F IF 1NG TEL LENG TH 10

Nuzmber of entries in tallistic tables ~

*ypeief nstruot wcrio-cor-_ 2EL float ::.,y; WOFS

t ypeJe f struc-t wlJ'rJ3D{ flo-atx,,z;}Cz.:2

typedef struct screencoocrd short ::,y; }'20L

typedef short Color,,rectorS[3];

typedef long ColorvectorL[3];

typedef float .o, lcrvectorF(1;

Figure A-2 WEAPONS Header File - Continued
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, * . . . .

-- Define reccid for class of ammunition or type cf rund

+ 4

trajectory_type ( ENUM

+---------------------------------------------------------------------------

I warhead ( ENUM ) I

4---------------------------------------------------------------------------4

I round name ( STRING[10] ) I

--------------------------------------------------------

i speed ( meters. 'sec) I

----------------------------------------------------------------------------

I mint anoe ( meters

------------------------------------------- +

1 maxrane k meters i

typejef enum ammotype ( INERT, CHEMICAL, WIKE FASrAlM,

-U 'UIT .... I T'YE PWAFHEAC

t-4'eief ::7 r -nticr_ t]Te

TYPE FLIGHT traje,-tcry ty]e; type of trale:tory

TYFE WARHEAD warhead, * type of warhead *

-har rcunJ namel!0]; * string n ame - f muni- n -

float speed; * meters,'second *

float minranqe,* minimum armino rarge
maxrange; * ma-imum offeotive rane *

float ballistic table[ll];

) MUNITICN CLASS; ;

---------------------------------------------------

Define structure for sight reticle

Figure A-2 WEAPONS Header File - Continued
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+-

type

4----------------------------------------------------------------------------

name - STRING

+----------------------------------------------------------

magni ficat ion

+----------------------------------------------------------

numlines - # lines in reticle

+----------------------------------------------------------------------------

lines -- > HAIRLINE (array)

4---------------------------------------------------------------------------4

safe liqht

±----------------------------------------------------------4-

ranie pcsn ( pcsn of ranue strini ) I

+---------------------------------------------------------------------------

round posn ( p.sn of r und string ) I

4-----------------------------------------

ty-ze~ef int CHAR 'I'SNi[ ] ; * >,3 tu'e 'efines :ri]l-n _f sex'-

7* Lower left and upper right, Jimensio.ns of a retanole

typeJef struct rect type_2

float 11 x:, 11y, r :, ur-y:

) RECTANC-LE21:;

typedef struct hairline record f ' retile hairline start - end -

float start[2], en][2;

HAIRLINE;

typedef struct retiCle re:o,: I

int type; * code for type of reticle

char name[10]; * string containing weaponreticle name

short magnification; * normal magnification of sioht *,

int numlines; * count of number of hairlines in reticle *.

HAIRLINE *lines; * pointer to any array of HAIRLINE *

RECTANGLE2U safe light; /* rectangle coordinates for safety liaht *

CHLAR_2OSN range_posn; j* origin of range string *'

CHARPOSN roundposn; ,'* origin of round name string */

} RETICLE;

Figure A-2 WEAPONS Header File - Continued
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.. .. i-
-- Define structure to represent fired round while in fli, ht --

typedef struct RIFtypes

WCOORD3 fireposn, /* locatior of platform when

round is fired. *

posn, * location at last update *

pt of aim: ,* world coord pt of aim *'

float fired range, range data used when fired ,'

fired dist; /* current distan.ie from pt where

fired

float angle,

'he r-

!.IT IDU CLASS anu T "e if A :Z'i

I ROUJND IN FLIGHT;

-- - - - - - - -- - - - - ---------------------------------------

SDefine structure for -lass of weapon systems. There will b- --

-- ne _f ohese re:sds fi,r ea:h t-' --f wear-:n s-stem. --

---------------------------------------- 4

name - ZTRItI'S

-4---------------------------------------------------------------------------

4----------------------------------------------------------------------I reload ti me ( ti'me I

I ammCtype3 ( array of -- > MUNITIONCLASS )

4----------------------------------------------------------------------------

Iba-li load ( array of int )

+--------------------------------------------------------------------*

Figure A-2 NV'EAPONS leader File - Continued
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typedef struct weapontype

char name[,O]; /* name of weapon sys, ex: MlTank MG *,

RETICLE *sight; /* sight picture used for this weapon type ,'

time f reload-time; /* Minimum time between firings */

/* Array of pointers to posible munitions for this weapon sys */

MUNITION-CLASS *ammo_types[MAX_RDTYPESPERWEAPON];

/* Array holding starting quantities for avail munitions *

nt basicload[MAX_RDTYPESPERWEAPON];

WEAPONS;

Define structure to represent weapon system carried by a

-- platform.

------------------------------------------------------------------------------- ---

wpnclass -- WEAPONS

--- -------------------------------------------------

ranoe_readinI

----------------------------------------------------------------------------

safetyon ( refire FLAG

----------------------------------------------------------------------------

round-select -- > MUNITION CLASS

+--------------------------------------------------------

last fired ( time )

+----------------------------------------------------------------------------

roundsremaining[] ( array by type round ) I

----------------------------------------------------------------------------

*/

typedef struct weapon record { /* instance of weapon */

/* class variable */

WEAPONS *wpnclass; /* ptr to weapon type record *

Figure A-2 WEAPONS Header File - Continued
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/instance variables ,

float range-reading; /* current reading in rangefinder ~
Boolean safety_on; /'* flag whether weapon safety is on or off ~
/* ptr to selected round, type of munition currently selected *

MUNITIONCLASS *round select;

/* time system was last fired, 0 if never fired. *

time -f last-fired;

/* array of rounds of each type of munition remaining on platform ,

int ronsrmiigM-_DYE PER_-WEAPON];

)WEAPON;

-- Define record struo7ture for t inted e-:-ets

-- ------------------------------------------------------------------------------ --

4-----------------------------------------4-

+-----------------------------------------+

I ~ Last _update (time I

------------------------------------------ 4-

IprccesS e-ernt -- > fun:( -- ,e-:ent- I

--------------------------------------------

I ne::t-event -- > ev.ent

4------------------------------------------4-

I --:ariant ( UN1-i'I

+---------------------------------------+-

7* Record for event variant part to reset something on a weapon after

a certain amount of elapsed time.

typedef struct weapon_timeoutf

time f duration;

WEAPCnN *wpnptr,

Figure A-2 WEAPONS Header File - Continued
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WPNTIMEOUT;

typedef 3truct msg type

time-f duration;

char me33age(401;

)MESSAGETYPE;

typedef struct splash-record

coor~i Z; Where to: Jraw r- und srlash

typedef struc,:t flach reccrd

short colornum;

.ehicle ~i~hoe

IFLASH E'.EN4T;

typedet stru-t I* Pe-cri f- ;'enicle "one

Vehicle v-.ehptr;

flcoat 1-cunce arnliI-Je:

I BOUNCE EVENT;

typedef union type e-.-ents

ROUNtINFLIGHT round-aloft;

WPNTIM4EOUT wpntimeout;

MESSAGETYPE letter;

SPLASH EVENT splash;

Figure A-2 WEAPONS Header File - Continued
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FLA5H EVENT fiash;

BOUNCE EVENT bounce;

/* add other timed event types here -

EVENT UNION; /* end union */

typedef struct event record

Boolean delete; '* Flag indicating expired event */

time f start-time, /* time event was initiated .

last-update; '* time when event was last

updated */

(nt process event) (struct event reccrI *)

Spcinter to function to handle this e *

s- riot event rezord *ne:t event;

E:ENT-2 T7N hN variant; * v.arrant part -f re- ri

-" S; T eS.e struct e-ent record *'

:- - - I a e La I va:_aLIes to C:ntain the values fr a-t:al --

-- WEAFQUS, RETII-LE, ani MUNITIN LA$ classe --

eo-tern WEAPIN2 ml tankmu sabct,

ml tankmg heat,

bincs class,

t~w -lass;

e'<tern FETIPLE reltank ounner reti-le,

binos reticle,

tow-reticle;

extern MUNITIONCLASS ml 105sabot,

ml 105heat,

tow-standard;

extern WEAPON binos;

Figure A-2 WEAPONS Header File - Continued
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~ecodearg uements
define cursors
in itiris

INITIALIZE setcolor initialize
billboard-
light model
init months
mape~popups
loadpaths

RUN event

TERMINATE cleanup oneqxit
exit-simulator

Figure A-3 MIAIN Module Program Flow
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Eo-itroE1

(Display Intro screens,
display 35 KM map, &

elect 10KM as)
dispay big map

draw box around current area
dFOSeiecF area

(Inhilltze to 10KM terrain date bass)

read _data
caic -ground _plane

maketerrain
initialize terrain mat

tDispann1OrMmap &

dispatch(Main menu opertions)

dispavl c, lvr

_ _ _ _ _ _ _ _ fr na

Figure A-4 Module event( Control Flow



set-qu elM
setcontrols

control input lo-op dr: driving menu
seitv'pfor -rving
handlecontrols

handle netvwori( input ctiecl _torpackiets

update guide points and controls autopilot

update ehicle model for each platfc-m uYpdate_v,-,h _modpl

update vehicle position tor each platform update_ 4;h pos

.iiewbounds
displa?_nav

drab3D ew ____________________________dlspla - firreox
dfawC) IQWdisplavinfrnc

dra Nterratr
dfispla data

send networr update messages network

.7igure A-5 Display Loop in e-.ent driN ing



sot-queue
setcontrrils-togm

corol input loop -dot firing menu
hanod lec OntrolsrcparliaI
handlecontrol_ 9 ms

handle networki~ nput -chcfapackets

Ipdat- ~ ~ ~ ~ ~ .rda~ wevr ,,rinfr v w~r~i~iH ~e~ ~~rtvn H 4<~h ~3!~cm "ewtounds

tipdatepuo4 -P Ds3ogm

display ns
displaynbv fr
drfawip rain
dispi 'data
dipIl, sldpzn

S0e'd !'0orIN0 JIidVCI rn1O.SAc7q rre~ork

Fiire A-6i Di~pjajv imp in ev'ent fixing



TABLE A-2 SUPPORT FUNCTIONS

addflash.c Adds round impact flash --.ent to th-

event lost

a Idme s 3ae Adds messag3e disr lay eo.-nt e

list

addsplash.c AdIs r-ound sr-lash e-oent- *- -ent list,

ad-eh. c Aido platform.

aps.- M'ain routine

arcsine~ Fet-urnis arcsine -f input parameters

au t c'p 1c't .c C7omputes co.urse and 3p-e f-r

platform~s

I I : a r i

broadoast ve~~~oi~es ~ - cntains ~-olntzk~'~''-
fa j -3st TeF I 5

eveo -- fe- ac;a les nor~..........

-k iparameterc-.c: a OC aes :e er z 71~ i: i -4

.4. r. arraoT- -

E:o MP ' rints a n'-i - * .-.

c:hec7kf forr a k e- s Handles the re7eption ;:n,' pi

of rnetwcrk messasies

check round in flight. c U7pdates round poi ohandlesq

round impact with plat f rm, or zor und

clearwindow.c C-lears a window to inFput lr

--Ara nc.rmals.c Calculates normals fori 0 oAra

helicopter

,col Ii si on Jet ect on. Detects collision between any two-

p-lat t rms

mpu~ 9sI p~ oorc~tes he slo-pe of a I n

compue st art -- t r Computes inf crmati_4n f: -Lr daw- e:i :ain
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TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

compute sunl- l:at i n. c Computes sun (lioiht s-ur:_,) Ia

based on month and h-ur

compute_x bcunds.c Computes x drawing limit fir

drawterrain

compute-z bcunds.c Computes z drawing limit f--r

d r awt er rain

convert to dec hr.c Converts to decimal hour

convert to -hr min.c Converts to hours and minutes

decode arzouments.c Handle command line arjuments when

aps in started

~ curso rsc ets ip cuIrsor shapes

e J l,.c"eletes -3 platf --m an] 3"a

lis; 2 Iav, Y ti-Tmar.c --~zas St vll DmF,

disolay daTa -3 . bi orays ::rent syst em a::ri

LII fi ma tte -, str In -

T- 1 r va frec 1 2 --1s M ue lend fir a.

withi weapcrn syste ma'

C15 1 L Il -lafIrf I

dFola 1 md i.C aocylSy M ~s e l e Pn J fr 1: a'f r m

plat f.<rIm

ee -atir t 12 n ma p

dispay lcen firnavbx~c Displays co-lor aradations tfo-r so

colo-red 2D 10FKII map usedj fo r path

p Ia n n inci

di s pl2a y' mat: Draws 1C KM~ 2D maF

dio p la a.Draws blue cou-_rse a: row and field-_f-

view limits

risjulay_ sli-der.c- lisplays trackinsi cocntr'ols for F'It

plat form

distlytakd ess. Displays truojmessai- 11 the

0 o:r'en
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TABLE A-2 SUPPORT FUNCTIONS - CONTIN UED

do-capture.c Handles storing platfo)rms into data

file

do-change_speed.c Allows user to set the speed of all

plat forms

do char.c Displays a character in file name

window

do driving menu.c Displays driving menu and] handles

select ion

do flying menu.c Displays flying menu and handles

select ion

d int ros. c Handles se Ie ticn to- disp lay -ser

instructio n winjW

do -main.c Builds and dicplays ma'"r mer"' and

handles select i~n

do main reset.c C-leais all windo:ws an-J J-sL 'r,-

teirainr. mar

do-pathcps. c uilds and displa-is Fa-.I? rera - n

.men':i ain! acl ~~i
do-quittinoi.c Handles prog,-ram ex it selection fro: m

any menu

do resize. c Hand,-les zesize seictin nl a.c

men,

do selec-t-area '- Haniles men'u selectizn -f -a

cperational area o-n the YW-T map

do the add.c7 Handles menu 8ele--i"- --f adilnu a

p1 at fcrm

do - !-' -S Hanles menu: -~~~ f aiinun a

default set of platfo-rms

do -the delete.c Handles menu selection of deletinoi

one or all platforms

do-the-select. c Handles the selection of a platform

draw box -:aroun~d c-urrent-area.c Draws red box around currentlC

area on large rr.ap

-draw-cotra.c Draws the main body o-f the attack

,,e icopte r

draw ojuidept . c Draws a 'juide point- as a marker on

thle tlerrain



TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

draw in cobra.c Draws the cockpit framew-rk when

looking from inside the attack

helicopter

draw main rotor.c Draws attack helicopter main rctr

blade

drawprojectile.c Draws round in flight

draw reticle.c Draws weapon sight picture

drawtail pipe.c Draws attack helicopter IR supPre:sr

draw tail rctor.c Draws attack helicopter tail rot--r

fa,..;wfIame . c Draws flame from t-il if FC-M

drawflash.c Draws flash when round impaits a

!lmt form

drawgrib-.c Draws a ho:: in the mar, win w

dLawxun.. Draws the tank Lazrel an ---,e

e aCuator

-]r~w - :: - [ a',-:s the ! n f:r a h ':i,'[ f

plat form

]LawPI: rPws the ji-ep

drawmalssile.c Dr-aws the EQP,1

drawr!iL r.- Draws the tank rollers

drawc:,lash. F raws the crcuni splash when 3

rijectile impacts the 4r-unI[

drawtank.o Draws the body -f the tank

jlraw'er rain.- !'ain t errain an A L lat fernpi1:a i: :

rzut i ne
d~awtre. " [ aws tire

drawtrack.c Draws a tank track

drawtruck.c Draws the truck body

drawturit.c Draws the tank turret

drawwreck.c Draws a burning wreck

error hancler.c Centralized error handIer, !ist

prints error message and retrns

event.c Main drawing cycle dispatch routine

event drivrn4.c Ground platform drawing cycle

event flying.c FOG[4 drawing cycle

e:it simulatr .: Cleans up on en:t
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TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

e.-plosion.c Flashes screen when current plat-f rm

is destroyed

fire blast.c Flashes screen when weapo--n fires

fiLre-weapon.c Handles weapon firing

flamenormals.c Computes no ,rmais fcr the FODGt flarre

gen-wildman defaults-c Generates a defaull set of platfo rmp

get-curr-fps.c Calculates current drawing rate in

frames per second

get_mouse_.xy.c GSets current locaticn of mo:use cursor

get name . c D~pens windo w fcr user to enter f-ie

n ame

gnd_ le-.-el.ci -Cmru'-teF --It zund le.-e 1 f invz W-t r

and level TTM.c Comp-,-utes :iround le-:e -- input 7-1%

'?-rdinat-s

auid ance. c ontainsrotnst a.'

tsoio~n Letwe:en u 3:es

Qunnormals.:- Comp7utes n--rmals fo-r tar): Larrel

handle crash.: Handles collision of tvoplatfor's

handle event s.,7 E-:11 1Lan-Iler packacei

handle trac-kini.,: Handles F-CS11 tra:kini ru~oafr

handlerontrol's.c Handiles mouse and dialin:- h

d r - ing a qro u-id plat-form

handleontrc's foom .:7 Handles dial inuswhen flvino

han,:noe-,rcls partial. : Handles mrus e '---s heni~

highlitegrid. c Hiahiiohts the 1 X 1 KM- urids that

oo ntain any platforms for rz>om-in

init fonts.: Initializes fonts and szalec them t*-

window sire

mnit-months.c Initialize month and lij'Mtinj

mnit network.: Set up network sockets and stream

server connection queue

mnit weapo ns.c initializes any weapon qystems cii

board a3 tiat form

initialize terrain-mat.: Defines materials for terrain

polyons based on current -,, ''- ma
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TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

initiris.c Initializes graphics system

initveh.c Adds platforms from a file

jeepnormals.c Computes normals for a jeep

letter.c D~raws a letter on the billboard

light-model rnitialize.c Initializes lig7hting model and

lighting viewer definition

lightdefs.c Defines materials, lights, and

lighting model

li-nit cursor pick.c Limits cursor for targeting attempt

b y FKOGM

I FI' ,- a13u-.c Limits tau etween uerand 1-wer

b &,und

1 -a Iirt L- adJs a u n if ma tr I; n, ~h- sf-a -V

Makepopups.c Fuilds static- menus

maket ank.e- Builds poly,? n -arrays for tank

n~ie~erai~cFills the terrain ele-.a'ticn. an~d

lerraln pF:ly-cn normal arraxYs

maket ia:k. Mke sn t rack elye

mapo-.erlay.c Draws the platform icons on the 2D

math utility. c Pa~ka~ie of math utility functio'ns

missile

mcuSse7ren : c'Snverts sc-reen qi::el) coor inates

to, tTTM ccc-i rinates

worldl -raphics ccrdlina-s

mc-useterraintcutm.c bonv-.erts from 1ThKM coo,-rzi-nates tz

tTTM coordinates

mouseutrnt -.screen. c Co-n-.erts from T ITM coordinates to

point on the screen

m--useutmtoterrain.c Converts from TITM coordinates to

10KM coordinates

mc usewrldtoscreen.c Co nverts from 2D worldJ eordinaf-e

to screen coordinates

n-4-sra seFce a'-kaue containinro r-utin-F

rranac7e stream connectio-ns

r, etwrk Buildls miesgaies and seiids themi
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TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

networkIO.c Package of messaae lev:el network

communication routines

normalorient.c Computes normal and recrcganizes

vertices of polygons

npoly_orient.c Orients polygon v.ertices fr

backface method of hidden sulrface

removal

obstacles.c Stub module for obstacles package

openjeepnormals.c Computes normals for open jeep

path. c Packaae of routines t,3 manag:e paths

placewindow sizes.- Se-ts aspect arid size fcr- bhiiLcarA

placewindows.c C-alc-ulates the V -Sit iir -f 31

windows and opens t-he:m

pc pwlnd:,w. c Pop'S a winJo-w in,-u

manaie r

ranc1:e fi4nde r . rml'es ae a;:fr.e

calculates the range tc. nearest

p 1ati f r-n I ,n n 2.-h

read data.:- Reads elev.atio-n and la,, :o aa

from file

reset ti4ltf.c Resets FC'GM tilt anule after

releasing trackin-i mode

reticles .-- Variable definitions felr si c-ht

reticle arrays

rincgthe-bell.c RinUs the terminal bell

rollernormals.c Computes normals for tank ro llers

select an area.c Handles select ion of an area -Pn

map

select _grid-square.c Handles selection of 1 X l KM' grid

scluare

select-sight.c Displays viewing mode menu and

handles selection

set driven view.c Sets viewing parameters fo-r

per 3F ec:t iver and eye :ie,-met r y

set-popup-colcr.c Sets the co lor o-f the pppMonuIs

set queue. a Queues up dials and os



TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

set-unqueue.c Unqueues dials and mouse

setcolor.c Sets current RGB color based on

values in RGB color array

setcolo:r-initialize.c Initializes RGB color array

setcontrols.c Sets up controls for driving

setcontrols13fogm.c Sets -Controls fo:.r flyinq the FfDGM

missile

setcursorcolor.c Sets the cu-rient color of the cursor

setup-for driving.c Sets uip for dJri-.rng usinji mouse

ijoYstick

setup-na-:win.o- Draws small 2D lCMmap in

setwinlcow. 0 F its f~~: int- a winiw

setworldcoord.c Sesworld ccod:inates --f win~lw

ZF -.tP.e. c Pac-kac3e co:ntainln-7 octo i-t

mnaacze simulaticn time

s 4n R-eturns interrolatied tabl- 1-:kut,

-.alo-es fo r sine and cosine func-tio.ns

switch -.-eh.c Retu-rns poin'ter to platform selected

wonMou-se

tanknormals.o :7pue normals for a ta3nk

terrainnormals.z Co-mputes normals fo r the terraln an-d

stores them in an arrav

tirenorma!ls. c opue norma-'S for a tire

totnuncoL n -.-- h.-o Felur-sttlnnhr- io

vat f _rms

t ot e eh .C Returns total iinmber of Flatfzrmf

tracking-check.c Performs check of FOGM trackinu

system

tracknormals.c Computes normals for tank tracks

truokncrmals.c Camputes normals for truck

turitnormals.c Computes normals for tank turret

update look_pos.c Calculates Position that viewer is

looking at for ground platform

update-look-pos frmn.c Calculates position that v.iewer is

loioat fo-r P1 3Mmise

upat vb~oscMoves plat f orm toc new p-ostrn

ve odctp. C Computes vector lot product
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TABLE A-2 SUPPORT FUNCTIONS - CONTINUED

vecmag.c Computes magnitade of a vectcr

vehmodel.c Package containing vehicle montio;n

modeling routines

viewbounds.c Computes viewing limits for

drawterrain

122



APPENDIX B PATH PLANNER CODE

Mode LISP; Package. USER, Syntax Common-lisp

Title clock functions

Author: Shannon
Date- 12 Apr 1989
Discripton. This program provides for the timming of clocks used in the Path Planner Control Program

(defflavor myclock (i(start-iris-time 0)
(start-sym-time 0)
(last-iris-time 0)
(last sym-time 0)
(delta-time 0)

tntab~e-,rstance--varia 'es)

(defimethod 1,set-start-time myclock) is-tme)

(let' 0

(serf ast-irr -tme fris-time)

(sert start-irs-time Iis-tme)

(self start- sym-time (zl time))
(serf last-syrr-tme sta-t-sym-time)

(setf delta-time 0)

(defmethod estlast-time my,-lock) ins-time)

(let' ((deita 1 0 0) (oelta2))

(progn

(sett ast-sym-time (zI time))

(sett last-ins-time iris-time)

(self delta', -iris-tine start-r~s-timej)

(sett delta2 (-last-sym-time start-sym-lime))

(detmethod ( get-time myclock)
(.delta-time ( ( 0 0 (time-difference (zi time) last-sym-time)) P, last-iris-time)

(dletmethod (.get-all-times myclock) (
(phnrc start-ins-timne)
(pnnrc start-sym-time)
(pnnc last ins time)
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(princ Iast-sym-tme)
(phnc delta-time)

124



Mode LISP, Syntax Common-Itsp, Package USER
Tidle chaosffavor lisp

Author Kwak
Modified by Shannon

Date. 19 Apr 1989
:Discnption.This code performs the communications between Symbolics computers using a character stream

(load 'comm-tunctions")

(detfflavor mychaos ((host-name 'sym 1)

(contact-name 'user-chaos*)

(contact nil)
(userstream nil)

(0
in tabie- instance -variables)

(detmethod (set-host-name mychaos)

(name-of-host)

(setf nost-name name-of-host,)

(defr-ethod set-contact-name myrchaos) .,namre)

(setf contact-name name))

(defmethod ( set-contact mychacs) (con)

(setf contact con))

(detmethod ( set-stream mychiaos) (str)

)setf userstreamn str))

(defmettiod start-user mychaos) ihostname contactnamrel

progn

(send self set-host-namne hostname)

(send self set-contact-name contact-ame)

(send self set-contact (chaos connect hostname contactrame 13 72000))

(send self set-stream (chaos make-stream contact direction bidirectional))

(terpn)

(princ "host name ) princ host-namne)

(terpni)

(pnnc -contact name -) (pninc contact-name)

(terpn)

'A conversation using chaos has been estatished*))

(defmethod ( start server mycnaos) contactnarre)

(progn
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(send self set-contact-name contactname)
(send self set-contact (chaos listen contactname))
(chaos accept contact)
(send self set-stream (chaos make-stream contact direction nidirectiona)

(terpri)
(pnnc *host name )(pnnc host-name)
(terpn)
(pnnc *contact name ') (pnnc contact-name)
(terpn)

'A conversabon using chaos has been established'))

(detmethod ( put mychaos)
(object)

(send userstreamn line-cut object)

(send userstream force-output)

(defun read-string-symn (streamn nirm-chars)

(let ((out-stnng -))

(dlotimes (i numn-chars)

(sett out,-string (string-append out-sl,:ng reac-cn-ar-nc-n~a-g st'eam I

out string

(defmnethod (cieck-sym mnyc~haos) sze-io)

(progn

(setq typebiffer

(reaoi-string-syn userstreamn Siae-c),

(defmethod ( put-ready mrychaos)
(object)

,From path-planner to art
(let* ((buffer

(setf buffer (sting-append (sting append buffer object)i1,

(progn

(send userstreamn line-out bujffer)
(send userstream force-output)
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(detmethod ( put-waypoint mychaos)

(object)

from path-planner to art

(setf buffer (string-append

(string-append butter (convert-number-to-strnng object))

(prcgn

(send userstream line-out buffer)

(send userstream force-output)

(detrnethcd (load-map mychaos)

(utm-e utm-n veh-id)

arrn a to path plann~er

(let* ((buffer

set" b-"lcr str~rg-a pernd

jstmn~g append bu ffer
convert r.mber-to-stu n:: 1j--eOCD;30OOOCOGO

veh-id

p'cgn

(send userstrea-'i 'u c.-2 bffer)

sF.-,c .se~streamn''ezp

(defmettiod ( put-pathi myohaos

(org-utm-e org utmrn- siart utri-e star-t om- goaA- goal-utm-n veh- C',

from ar, to path-planner

(let* ((buffer "@@@@')

(string-or,,-e (convert-number-to-slnng org-utm-e))

(string-org-ni (converl-number to stnng org-Arnm-n )

(string start-t (con vert-number-to-stning start-utm-e))

(string-start n (convert numiber to-stnng start Ltm-n))

string goal-e (convert number-to-string goa'.jtm -elI

(string -coaI and id icon~ert numnber to s!'Ig
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(~ *goaf-utrn-n 10000000000)

veh-id

(sel butter (string-append

(sinng-append

(string-append

(string-append

(string-append

(siring-append

(string-append buffer

string-c rg-e

string -org -n

sting-start-e

strng-'a-

string-g:,a i-and -0

(progn

(send userstreamn lne-out teuffej

(send userstreamn force-ojtput)

(Oetrneth-od (stop mychacs)

(send userstrearr d~ose albort,)
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Mode, LISP, Syntax Common-lisp, Package USER

.Titde insflavor3 lisp
Author Kwalk

Modification Author. Shannon

Modification Date 20 May 1989
;Discripbon' This code provides communications functions to the symbolics workstation, whereby it can
communicate to the Ins

(detmacro loopfor (var init test expi &optional exp2 exp3 exp4 exp5)
(prog ()

(setq ,var mnit)
tag

expi
.exp2
,exp3

,exp4

.eXP5

(setq .var (1 - var))
(if ( = var test) (retu.rn t) (go tag);))

(load 'comm-functions')

(detvar ins-por11* 1061) this is the send port

(detvar 'iris-porQ2 10-61) this is thie receive port

(def'var *ioral-talk-port* 1500) this is tie local send

port

(diefvar 'ocai-listen -port' 1501) this is tl'e local

receive port

(defflavor oonversaton-with -iris ((talking-port number 'irs-porti*)

(listening-port-number *iris-port2')

(Ioza1-tai~k-po1t-n--nnber 'locai- tak- port)

(Iocal-listen -po r-n um be r

*local- li sten -port')

(talking- stream)

(listening-stream)

(destnuation-host-object)

0)
initable-instance-vanables)

(detmethod ( nit-desti nation -host con versat on -with- ins)

(name-ct-host)
(setf dlestination-host-object (net parse-host name-of-host)))
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(detmethod ( start-iris conversaton-with-ins) (
(setf talking-stream

(tcp open -tcp- stream dlesination-host-object
talking-port-number
local -talk -port-n umber))

(sett listening-stream
(tcp.open-tcp-stream dlestination-host-object

listening- port-number

'A conversation with the ins machine has been established")

(defun read-string (stream num-chars)
(let ((out-string -*))

(dlotimes (i num-chars)
(setf out-string (strinlg-append out-string (read-ch ar- no -hang streamr')))

out-string))

(dlefmethod (.check-is conversation-wi:h-iris) (size-io)

(let* ((typebuffer)

(progn

(self lypebuffer
(read-string listening-stream size-io)

(detvar *step-var' 0)

(detun my-wrlte-string(stnng stream)

(let* ((num-cliars (length stnrig)))

(dlotimes (i num -chars)

(write-char (aret string i) stream)

(detmethod ( put-waypoi"., co',versaton with-iris)
(veh-id utm-e utrn-n)

(let* ((buffer (string-appena

,13 0



(string-append

(con vert-nu mber-to- string veh-id)

(string-append

(string-append

(convert-numbar-to-stning utm-e)

(string-append

(string-append

(convert-number-to-string utrn-n)

(buffer-length Iength buffer))

(lengtribuffer iconvert-number-to-srnmg ouffer-Ieng-. 1

(progn

lmy-wnite-stning buffer !?)jng-stream)

(send talking-stream force-output)

(defmethod (stor-iris coriversation-with-iris)

0)
(progri (send talking stream ciose)

(send listening-stream close)))
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Mode: LISP; Syntax: Common-lisp; Package. USER
title comm functions
author Kwak

,discription This program provides functions to the communications progarams that convert to and from strings
and numbers.

(defun convert-number-to-string (n)
(princ-to-string n))

(defun convert-string-to-integer (st- &optional (radix 10))
(do (00(+ j 1))

(n 0 (+ (* n radix) (digit-char-p (char str j) radlix))))
((= j (length str)) n)))

(defun find-period-index (str)

(catch 'exit

(dlotimes (x (length str) nil)

(if (equal (char str x) (char ""0))

(throw 'exit x)))))

(defun get-leftside-of-real (sir &optional (radix 10))

(do (0(0 (1 -j))

(n 0 (-, (* n radix) (digit-char-p (char str I) radix)))

((or (null (digit-char-p (char strjI) radix)) (= I (length str)(( n)))

(detun get-nghtside-of-real (str &optional (radix 10))

(do ((index (1 + (find-period-index str)) (1+ indlex))

(factor 0 10 (' factor 0 10))

(n 0.0 (+ n (* factor (digit-char-p (char str index) radix)))))

((= index (length st')) n )))

(defun convert-string-to-real (str &optional (radix 10))

((float (get-leftsde cf-reai str radix)) 1get-nghtside-of-real str radix)
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Mode LISP, Package USER; Syntax Common-lisp

,Tite define-packege-interface

Author Shannon

;Date 24 May 1989

,Discnpton Defines the interface between programs running in diferent Symbolics packages

#L(defpackage ct-user

(:export

conversation-with-irs

mychaos

mycdock

convert-number-to-string

convert-string-to-real

convert-stnng-to-integer

string-append

princ-to- string))

133



%%%o/ -*- Mode ART, Syntax: Common-lisp, Base. 10.; Package ART-USER
.Title: Path Planner Control Program
author: Shannon
Date 11 June 1989
.Discniption: This program provides the over all control logic for finding a path and the sending that path to

the vehidle simulation.

XL(load "irsflavorW)

#L(load "chaosflavor)

#L(load "def-interace*)

#L(load 'clockflavor')
#L(detvar tak-s)
#L(defvar talk-i)
#L(setf talk-i (sclmake-in stance 'usercon versation -with-ins))
#L(seff talk-s (scl make-instance 'user mychacs))

(defscriema counter
(seq 0)

(dlefschema obsticle
(-nstance-ot counter)

(nw-utm-e 000)

(nw-utrn-n 000C)1

(sw-utnl-e 000)

(sw-utrn-n 000)
lse-utm-e 000)
(se-utm-n 000)

lne-utm-e 000)

(ne-utm-n 000)

(seq 000)

(seqt-ord last)

(detsohemna obj-type
(type unk)

(defschema location
(utin-e 0001

(utm-n 000)

(detschema id
(veh-id 000)
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(defschema map-state
(ready not-yet)

(defschema clock
* (dlock-id new)

(time 000)

(defschema control-condi dons

(new-goal no)
(quit-all no)
(broke-down no)
(pause no)
(whole-patti no)
(new-time no)
(new-way point no)

(old-time 0)

(defschema initial-map-points
(org-utm-e 000)
(org-utm-n 000)
(start-utrn-e 000)
(start-utrn-n 000)
(goal-utm-e 000)
(goal-utrn-n 000)

(defschema control

(instance-of clock)
(instance-of obj-type)

(instance-at id)
(instance-of counter)
(instance-of control-condituons'

(defsctiema map
(instance-of obj-type)

(instance-of location)
(instance-of id)
(instance-of map-state)

(clefsctiema init
(instance-of obj-type)
(instance-of id)
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(instance-of initial-map-points)

(defschema veh
(cse 0)
(vel 0)
(guide 0)

(defschema veh-ciiange
(delta-time 0)
(new-position no)

(defschema msg-state
(current no)

(defscliema veh-state
(instance-of obi-type)
(inszance-of veh)

(instarce-of id)
(instance-of location)
(instance-of ven-change)

(defscliema veh-msg
(instance-of clock)

instance-of obj-type)
(instance-of veh)
(instance-of id)
(instance-of foc-anon)

(instance-of msg-state)

(defsofiema machine-type
(one one)
(two two)
(three three)
(four four)
(five five)

(defschema sym
(instance-of machine-type)

(one symi)
(two sym2)
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(three sym3)

(defschema ins
(instance-of machine-type)

(one gravyl)
(two gravy2)
(three gravy3)
(four gravy4)
(five gravy5)

(detrelation msg-sym ('type))

(defrelation msg-ins ('type))

(detrelat:cn start-ins-comm (It-or-f))

(dlefrelation start-symn-ccmmr ('t-or-f))

(del relation menu l')one-or-two))

(defrelation sym-on "yes))

(defrelation check-comm ('ins-andl-sym))

(detrelation clock-update ('yes))

(defrelation sym-irik (' code()

(clefrelation iris-link (?code))

('deffacts initalization

(menu one)

(defrule menu 1
(declare (salience -1000))

(schema sym

(one '>sl)

(two ?s2)

(three 's3)

l<- (menu one)

(pnntout t t Where is the path planner located?')

(pnntrcut t t Your choices are the following, chose one by it's letter
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t "a 1

t 'b ?s2

t 'c ?s3

t "NOTE--Please ensure that the path planning software is running'

t)

'bind ?b (read))

(if (or (eq ?b 'a)

(eq ?B 'A))

then

(assert (sym-link 'sl)

(menu two)

(start-sym-comm yes)

else

(if (or (eq ?b 'b)

(eq ?b 'B))

then

(assert (sym-link ?s2)

(menu two)

(start-sym-comm yes)

else

(if (or (eq ?b c)

(eq "b C))

then

(assert (sym-link ?s3)

(menu two)

(start-sym-comm yes)

eise

(retract ?a)

(assert (menu one))

(retract ?a)

(defrufe menu2

(declare (salience -1000))

(schema iris

(one ')i1)

(two ?12)
(three 'i3)

(four 1i4)

(five ?15)

138



?a<- (menu two)

(printout t t *Where is the vehicle simulator located?")

(printout t t 'Your choices are the following. chose one by it's letter

t "a ?i I

I b ?1

t "?3

t ?14

t e ?15

t NOTE--Please ensure that the simulator is running"

t)

(bind ?b (read))

(if (or (eq ?b 'a)

(eq 7b A))

then

(assert (ins-link ?ili))

(assert (start- iris-commr yes))

else

(if (or (eq ?b b)

(eq ?b B)

then

(assert (iris-link ?12))

(assert (start-iris-comm yes))

else

(it (or (eq ?b c)

(eq ?~b )

then

assert (ins-link ?13))

(assert (start-ins-commr yes))

else

(it (or (eq Ilb d)

(eq 'Ib 0)

then

'assert, r:s- "k 9

(assErt start-i,,s-cornrn yes,)

else

(it (or (eq ?b 'e)

(eq ?b E))

then

(assert (ins-link ')6))

(assert (start-ins -comnm yes))

else

(retract ?a)

(assert (menu two))
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(retract la)

(detrule stan-ins-comm-links
(declare (salience -1000))

(ins-link ?ins-machine)
7a<- (start-inis-comm yes)

#L(sc) send talk-i init-destination-host ?ins-mnachine)

#L(scl~send talk-i start-ins)
(retract ?a)
(assert (check-comm inis)

(defrule start- symn-ccmm -inks
(declare (salience -1000))

(sym-link ?sym-machine)

?<- (start-sym-comrn yes)

#L(sci send talk-s stail,,ser 'sym-machne 'patn")
(retract ?a)

(assert (Syrn-on yes)

(defrule check comm ,r-,S. r~ s

(declare (salience 50))

la <- (check-comm ins)

(bind '7b #L~scl intern (sc! send taik-i check-ins 1)))

(if (eq ?b NIL) !nen

(retract 'a

(assert
(check-comm ins)
(check-comm symn)
(dlock-update yes)

else
(retract 'a)

(assert (msg-ins ?b))
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(defrule cbeck-comm-links- sym

(declare (salience 500))

ischema 'any

(or (ready sent)

(ready ready)

l<-(check-comm sym)

(bind ?b #L(sci intern (sdl send talk-s check-sym 1)))

it leq ?b NIL) then

(retract ?a)

(assert (check-comm ins))

else

(retract ?a)

(assert (msg-syr, lb))

(detrule read-update-in
(declare (sahence 1000()

""is- <- imsg-iris ?a)

(te s eq ?a 'i

lbind ?b #L(scl itern (scl send talk-i check-iris 3,))

fIlfeq 'b >>>)then
)" nd '?veh-id #L~sci send talk-i check-iris 10))

(bnd ?utm-e #L~sd send talk-i check~-inis 10))

(bind ?utm-n #L~sdl send talk-1 check-iris 10C)

(bind ?cse #Lsd send talk-i check-ins 10))

(bind '?vel #L~scl send talk-i check-iris 10))

(bind ?tine #Li sc send talk-i check-ins 10))

(bind "iguide #Liscl send talk-i check-ins 1))

ibino ')b #Lsci intern isdci send talk-i chec-i-r~s 3))l

(.1 eq lb >>>) then

(bind ?msg-id 'MSG*)

(bind ?msg-id #L(sol intern (user string-append '7msg-id ?veh-id'())

(bind ?veh-id #L(user convert- string- to-i nte ger ?veh-id',)

(bind ?utm -e OL(floor (user con vert- strng-to-real ?utm-.e)1)

(bind ?utb-n #L~for (user convert- string-to-real ?utrn-n,))

(bind ?cse #L(user convert-strinrg to-real *Icse))

(bind "vel OL(user convert-string-to-real ?vel))

(bind ?trne #L~user con vert-string -to-rea ' time))

(bind ?guide #LWuser convert-stnng-to-integer "guide))

(modify schema "rnsg-id

iveh-id "veh-id)
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(utm-n ?utrn-n)

(cse 'cse)

(vel Ivel)

(time ?tme)

(guide 'guide)

(current yes)

(retract ?rrsg)

(assert (check-comm ins)

(check-comm sym)

(clock-update yes)

(defrule read-init-in

Ideclare (salience IIOC0;J

?msg <- (msg-iris 'a)

(test eq ?a

(bind ?b xL(scl.intern (Sdl send talk-i check-iris 3()

(if ieqi ?b <)then

(bind ?org-utm-e #L(sdlsend talk-i check-iris 10))

(bind ?org-utm-n #L(sci.send talk-i check-irs 13i)

(bind ?veh-id #L(scl send talk-i check-irs 1 )

(bind ?start-utm-e #L(scl send talk-i check-iris 10))

(bind ?Sat-t- #L~scl send talk-i check-,r~s 10,j)

(bind )goal-utm-e #L(scl send talk-i check-iris 10,))

(bind ?'goal-utrn-n #L(scl send talk-i check-iris 10))

(bind ?time #L(scl send talk-i check,-iris 10))

(bind ?b #L(sci intern (sci send talk-i checkiris 3:;)

(if (eq ?b << then

(bind ?init #L(scl intern (user string-appe.nd ?ii '?venid)))

(bind ?map *MAP")

(bind ?map #L(scl intern (user string-append ?map ?veh-id)))

(bind ?cont"CONTROL')

(bind ?cont #L(scl intern (user.stnng -append ?cont ?veh-id,))

(bind '7veh *VEH*)

(bind NOe #L(scl.intem (user stiring-append ?veh ?veh-id)

(bind ?msg-id *MSG')

,bind ?msg-id #L(scl intern (user string-append ?msg-id 'veh-id)))

(bind ?org-utm-e #L(floor (user convert- string -to-real ?org-utmn-e)))

(printout t t ?org-utrn-e)

(bind ?org-utm-n #L(floor (user conver-stung-to -real ?org-utm-n))D
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(printout I t lorg-utrn-n)

(bind ?veh-id #L(user:oonver-strnng-to-integer 7veh-id))
(bind lstart-utm-e #L(floor (user con vert-string -to-real

(bind Istart-utn-n #L(fioor (user=on ve rt- string -t-real
?start-utrn-n)))

(bind ?goai-utm-e #L(floor (user convert-string-to-rea

?goal-utm-e)))
(bind ?goal-utm-n #L(ffoor (userzconvert-stflng-to-rea

?goal-utm-n)))
(bind ?tm #L(user convert-string-to-real ?time))
(bind ?clock-id #L(scl make-instance 'user myclock))
#L(sclsend ?clock-id set-start-time ?tme)

(assert (schema ?init

(instance-of init)

(schemna ' map

(instance-of map)

(schema ?cont
(instance-ot controli

'schemna 9veh

(instance-of veh-state)

(schema ?msg-id
(instance-of veh-ms,,)

(madily (schema ?init

(org-utm-e ?org-utrn-e)

(org-utrn-n ?org-utrn-n)

(veh-id ?veh-id)

(start-utm-n 'star-utn-n)

(goaJ-utrn-e ?goai-utrn-e)

(goal-utm~-n ?goal-utm-n)

(type init)

(schema 'Imap

(veh-id 'veh-id)

(utrn-e ?org-utm-e)

(utrn-n ?Org-utm-n)

(ready send)
(type map)

(schemna ?cn
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(new-goal yes)
(time ?time)

(old-time ?time)
(veh-id ?veh-id)

(clock-id ?clook-id)
(type oont)

(seq 1)

(schema ?veh
(veh-id 7veh-id)

(u tmn-e ?start-utm-e)

(utrn-n ?start-utrn-n)

(type veh)

(schema "msg-id

(type rnsg)
(current no)

(retract '>msg)

(assert
(check-comm syrn)

(clock-update yes)

(detrule process-map-Ioaded-msg

(declare (sa(jene 1000))
?msg <- (msg-sym 7a)

(test (eq 'a )

(bind ?b #L(scl intern (scl send talk-s check-sym 3)

(if (eq 7b "') then

(bind Ioond #L(scl intem (scl send talk-s check-symn 5)))
(bind ?veh-id #L(scl send talk-s check-sym 10))
(bind '?b #L(scf intern (scl send talk-s check-sym 3)))
(it (and (eq ?b '111)

(eq ?cond 'READY)) then
(bind ?map 'MAP')

(bind 'map #L(scl intern (user sting-append 'map 'veh-idl))

(modify (schema ?map

(ready ready)



(retract ?msg)

(assert (check-comm iris))

(detrule process-waypoint-in-msg

(declare (salience 1000))
?msg <- (msg-sym ?a)

(test (eq ?a@)

(bind ?b #L(scl~intemn (scl~send talk-s check-sym 3)))
(if (eq ?b *@@@) then

(bind ?utmn-e #L(sd send talk-s check-sym 5))
(bind ?utm-n #L(scl send talk-s :check-sym 5))
(bind ?veh-id #L(scl.send talk-s check-sym 10))

(bind '7seq #L(scl send talk-s c-ieck-sym 5))
(bind *?b #L(scl intern (sci send talk-s check-symn 3N)
(it (eq -,b C-9@) then

(bind ';way 'WAYPOINT")

(bind ?way #L(scl intern (user.string-append

(user string-append ?way

?veh-id

')seq

(bind ')utrne #L(floor (user convert-string-to-integer ?utm-e)))

(bind ?utmf-n #L(fioor (user convert- string-to-integer ?utrn-n)))

(bind ?veh-id #L(floor (user convert-string-to-inieger %eh-id)))

(bind ?seq #L(floor (user-conver-string-to-integer '7seql))

(assert (schema 'way
(instance-of id)l

(instance-of cnintcr)

(instance-of cb]-!ype)

(instance-at locatin)

(type w-point)

(utrn-n ?utrn-n)

(veh-id 'veh-id)

(seq 'seq)

(if (0 - seq) then

#Llscl send talk-i put-waypoint ?veh-id ?,t- ?utrnn)
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(retract 'msg)

(assert (check-comm irs))

(detrule clean-up-waypoints

(declare (salience 6000))
(schema ?way

(type w-point)

(veh-td ?veh-id)

(schema ?msg

(type msg)

(veh-id ?veh-id)

(guide 0)

(current yes)

(schema ?veh

(veh-id ?veh-id)

(type veh)

(guide 1)

(retract

(schema ?way

(instance-of id)
(instance-of counter)

(instance-t obj- ype)
(instance-of iocation)

(defrule clean-up-vehicle

kdeclare isaiience 53CC

(schema ?msg

(type msg)

(veh-id 'veh-id)

(guide 0)

(current yes)

(schema injt

(veh-id "veh-id)

(type init)

(schema 'map

(veh-id I'veh-id)
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(type map)

(schema 9cont

(veh-id 'veh-id)

(type cont)

(schema ?veh
(veh-id 9veh-id)

(type veh)

(guide 1)

(retract
(schema ?iit

(instance-of init)

(schema 'map
(instance -of map)

(schema ')-ont

(insance-of control)

(schema 'vehi

(instance-of veh-state)

(detrule c~ean-up-sym-msg

(declare (salience 500))

'?msg <- (msg-sym ?code)

(retract ')msg)
(assert
(check-comm sym)
(check-comm ins)
(clock-update yes)

(defrule rlean-up-ihs-msg
(declare (salience 500))

'msg <- (msg-ins Icode)

(retract ?rmsg)

(assert
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(check-comm iris)
(check-comm sym)
(clock-update yes)

(defrule load-map
(declare (salience 1000))

(sym-on yes)
(schema ?map

(utm-e ?org-e)
(utm-n ?org-n)
(veh-id 'veh-id)
(ready send)
(type map)

#L(scl send talk-s load-map )org-e ?org-n ?veh-id)

(modify
(schema ?map

(ready sent)

(assert (check-comm sym))

(detrule start-path
(declare (salience 5000))

(schema ')veh

(type veh)
(guide 1)
(veh-id ?veh-id)

(schema linit

(org-utm-e ?org-e)

(org-utm-n '?org-n)
(start-utm-e ?start-e)
(start-utm-n 'start-n)
(goa(-utrn-e ?goal-e)
(goal-utm-n ?goal-n)

(type inIt)
(veh-id l'veh-id)

(schema ?map
(veh-id ?veh-id)

(type map)
(ready ready)
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(schema ?control

Inew-goal yes)
(veh-id ?veh-id)
(type cont)

#L(scl~send talk-s :put-path ?org-e ?org-n '7start-e ?start-n ?goal-e ")goal-n
?veh-id)

(modify
(schema ?cont-ol

(new-goal no)

(detrule send-new-waypoint

(declare (salience 5000))

schema 'any

(type w-point)

(veh-id Iveh-id)

(seq ?seq)

(itrn-e ?east)

(utrn-n "7north)

(schema '7control

(seq ?seq-num)

(veh-id ?veh-id)

(type cont)

(new-way pont yes)

(test (and ("seq-nurn < "seqj
("seq-num - 3 > "Seq)

#L(scl send talk-i put-waypoint "veh-id "east ?north)
(modify (schema ?control

(seq "seq)
(new-waypoint no)

(if ("seq-num =1) then

(assert (clock-update yes))

149



(defnrile update-vehicle

(declare (salience 1000))
(schema ?veh-msg

(type msg)
(veh-id ?veh-id)
(utm-e '?utm-e)

(utm-n ?utm-n)
(cse ?cse)
(vel ?vel)

(time ?time)
(guide ?guide)

(current yes)

(schema ?control
(type cont)

(veh-id ?veh-id)

(schema ?veh-current

(veh-id ?veh-id)

(type veh)

(modify (schema ?ccomtrol

(time ?Ume)

(new-time yes)

(schema ?vhcdrn

(utm-e ?utrn-e)

(cse "cse)

(vel 'vel)

(guide ?guide)

(new-position yes)

(schemna ?veh-msg

(current no)

(defrule update-clock
(declare (salience 500))

?test <- (clock-update yes)

(schema ?control
(veh-id 'veh-id)

(time 'time)

Iclock-id 'clock-id)
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(type cont)

(schema ?veh

(veh-id 'veh-id)
(type veh)
(delta-time 'delta-time)
(new-position no)

(test (?delta-time =0))

(bind ?cun'ent-time #L(scl send ?clock-id get-time))
(bind ?delta-time (?current-ttme - ?Dme))
(modify (schema ?control

(time I'current-time)

(schema ?veh
(delta-time ')delta-time)

(retract 'test)

(defrule reset-clock~
(declare (salience 5000))

(schema ?control
(time 'time)
(old-time ?old-time)
(clock-id ?clock-id)

(new-time yes)
(type cont)

(schema ?yeh
(veh-id ?,veh-id)

(type ve h)
(delta-time ?delta-time)
(new-position ?no)

(if (eq ?no'NO) then
(bind ?delta-time (?time - ?~old-time))

OL(sct~send ?clock-id reset-last-time ?time)
(modify (schema ?control

(aid-time ?time)
(new-time no)

(schema ?veh
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(delta-time Idelta-time)

(new-position no)

(defrule change-position
(declare (salience 5000))

(schema ?7veh
(type veh)
(utm-e ?utm-e)
(utm-n ?utrn-n)
(cse ?cse)
(Vel ?vel)
(delta-time 'delta-time)
(new-position no)

(test (?delta-time > 0))

(bind ?delta-dist (7vel ?delta-t~me))
(bind '?utm-e #L(floor (, utrn-e (' delta-dist (cos ?cse)))))
(bind 7um- #L(floor (')utrn-n ( 7 e~ta-dst ,sin ?cse), ))
(modify (schema 7veh

(utrn-e ?utm-e)

(delta-tine 0)
(new-pos~uon yes)

(defrule new-waypoint

(declare (salience 1OOO' )
(schema ?veh

(type veh)
(veh-id ?veh-id)
(new-position yes)
(utrn-e ?utrm-e)
(utmn-n ?utrn-n)
(guide 1)

(schema ?control
(type cont)
(seq 'seq)
(veh-id ?veh-id)

schema ?any
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((car (cdr (cdr (cdr (car (car wave- paths))))))
1 000000 000000000

((car (cdr (car (car wave-paths)))) 100000)
(car (car (car wave-paths)))

(setf wave-paths (append (cdr wave-paths)
(list (cdr (car wave-paths)))

(t
(send talk-S put-waypoint

(-.((car (cdr (cdr (car (cdr (car wave- paths))))))

1 0C00300000000000000

((car (cdr (cdr (cdr (car (cdr (car wa ve- paths;;);)))

1000000000000000

((car (cdr (car (cdr (car wave paths,:j() 100003

(car (car (cdr (car wave-paths))))

(setf wave-paths (odr wave-paths))

wave-paths

(defin add-id trnode-l.st veh id)

(let ((numnnodes (iengtn node-list)))

(dotimes (x num-nodes)

(seti node-list (append 1-7dr node-list)

(list (cons veh-id (car node-list)))

node-list

(defun add-s.,q-nurn (node-list)

(let ((num-nodes (length node-hst ) (seq 0))
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(dotimes (x num-nodes)
(setl node-list (append (cdr node-list)

(list (cons seq (car node-list)))

(self seq (+ seq 1))

node-list

(defun sta rt- search -control

0)
(search -control)

(defun search-controi

0)
(load *ir-wave')

(load 'chaosflavor*)

(setf talk-s (make-instance 'mychaos))

(send talk-s start-server 'path")

(do* ((control-s (send talk-s check-syrn 1)

(send talk-s check-sym 1)

((setf time-to-quit *cone')

(send talk-s step)

(cond

((equal control-s )

(sell nexl-3 (send talk-s check-sym 3))
(cond

((equal next-3 i1

(setf map-sr-ut--e (send talk-s check-sym 5))

(seti map-str-utri-n (send talk-s clieck-sym 5))
(sett veh-id (send talk-s check-sym 10))
(self next-3 (send talk-s check-sym 3))
(cond

((equal next-3 "I")

(terpri)
(pnnc 'loading map*)
(serf map-utm-e (converl-stnng-to-integer map-str-utn--e))
(serf map-utm-n (convert- string- to- integer map-str-utm-n))
(setl veh-map (intern (stnng-append

(string append 'MAP*

map-str-u Irn-e
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(type w-point)

(veh-id "?veh-id)

(seq "seq)

(utim-e ?east)

(utm-n 9north)

(it (200 > #L(Iet ((dx (- 'east '?utm-e))

(dy (- ?north ?utm-n))

(sqrt (.. (' dx dx) (* dy dyf)

then

(modify

(schema ?cnto

(new-waypoint yes)

(modify (schema 'veh

new-pczs,:n no)
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Mode: LISP. Package USER: Syntax Common-lisp
Tide Search Ccntrol Program

Author Shannon
Date 5 Jun 1989
Discripion. This program controls the flow of the search algorithm

(defvar *done*)
(setf *done* nil)
(defvar *maps')

(setf *maps* nil)
(defvar *vehs*)
(sett *vehs* nil)
(detvar *wave-paths*)

(setf *wave-paths* nil)

(defun convert-to-utrn (node-Ist map-u~rn-e rnap-ut-n-n)

(let ((num-nodes (length noce-list()))

(doir-res (x r~m-nodes)

'ccrnd

((eq x ,- num-nodes 1))

(setf nocle-l st ,cdr ~a-it

(t

(serf car icar node-:st,1 (new-utrn (car c ar node -,s:,, nnap-Itm-e,,

(self (car (cdr (car node-list))) (new-utm (car (cdr (car node-list,))

map-u tmrn -

(self node-list (append (cdlr node-jist) ,ISt ioar node-!St,,J)

node -list

(defun send-waypoints (wave-paths)

(let ((rium-waves (length wase-Daths)))

(dotimes (x numn-waves)

(terpn)

(cond

((null (car wrave-patf.s)

sett wave-paths (odr wave-paths))

()cdr (Cdr ,c-ar wave-patlrs;,(

(send talk-s put-waypoirit

C(za' ocdr codr 'car ;car wvave-paths),,1
100000000000
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map-str-utm-n

(setf current-veh (intern (strng-append EHveh-id)))

(do ((maps *maps* (cdr maps)))

((or (equal veh-map (car mraps))
(null (cdr maps))

(cond

k(equal yen-map (car maps))
(send talk-s put-ready

(stnng-append 'READY"
veh-id

('null (cdr rnapsni

(sett (syrnbol-vaLue veh-map. (mrake-aray (102 1, 2)j

(sett *maps' (cons veh-map 'maps*)

send taik-s p-,,reacly

(string-append (Load-map 100O

map-u tm-e
map-u t'n- n

"bin-slope oat"

(symboi-vak~e veh-map)

veh-id

(setf (symbol-value current-veh) veh-map)
(do ((vehs *vehs' (cdr vehsl)))

((or
(eq current-veh (car vehs))

(null (cdr veh4))

(cond
((null lcdlr vehs)))

(setI *vers* (cons current-veh 'vehs*)(
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(terpri)

(princ 'map loaded")

((equal controls@
(setf next-3 (send talk-s check-sym 3))

(cond
((equal next-3 '@)@@)

(setl map-utmr-e (send talk-s :check-symn 5))
(self map-utm-n (send talk-s check-symn 5))
(self start-utrn-e (send talk-s :ceck-sym 5))
(setf start-utm-n (send talk-s :check-sym 5))

(setf goal-utrn-m-e (send talk-s check-sym 5))
(self goal-utrn-m-n (send talk-s check-sym 5))
(self veh-id-str (send talk-s check-sym 10))
(setf next-3 (send talk-s check-sym 3))
(cond

((equal next-3 @ @
(setf map-utrn-e (convert-stning-to-integer map-ut-n-e,1
(set) map-utm-n (ccnvert-stnng-to-integer map-utm-n))
(set) start-utm-e (convert-string-to-integer start-utm-e))
(set) stairt-utm-n (convert-string-to-integer starl-utm-n)(
(self goal-utrn-m-e (convert-string-to-integer goal-utm-m-e))

(setf goai-utrn-m-n (convert-string-to-integer goai-utrn-m-r.;)

(setl veh-id (convert-string-to-integer veh-id-str))
(set) start-utrn-e (floor ((-start-utm-e map-utm-e) 1001)1)

(set) starl-utnl-n (floor ((-start-utm-n map-utni-nI 100)))
(self goal-utrn-e (floor ((-goal-utrn-m-e map-utm-e) 100)))
(set) goal-utrn-n (floor)'I goal-utm-m-n map-utm-n) 1OC'j(

(setf current-veh (intern (strng-append 'VEH" veh-id-strf)

(terpri)

(pnnc 'plannin, path')

(terpri)

(pnnc start-utrn-e)

(terpri)

(pnnc starl-utm-n)

(terpri)

(prnno goaI-utrn-e)

(torpri)

(pnnc goal-utm-n)

(set) *wave-path-s* (cons

(add- secl-numn

(add -id

(convert-to-utn
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(append

(wave start-utm-e

start-utmn-n

goal-utm -e

goal-utm-n

(symbol-value

(symbol-vale current-veh)

(list (list goa-utm--e goal-utm-n))

map-utm-e

map-u tm-n

veh-id

.wave- paths'

(cond

((not (atom - ave--a: is*))

(self *wave-paths' 'edwypnswave pas)

(detun new-urn (nurr map-org)

(.map-org (* numn 100) (random 100))



Pack~age: USER; Mode: LISP, Syntax: Common-lisp
;Tite: Ir-wave.lisp
;Auhori Shannon

Date: 20 May 1989
;Oiscripton: This program is the implimentation of a wavefront search algorithm
(wave number-of-explored-cells touched-flag)

(defvar *cost-array*)

(defvar *center-cell*)

(detvar *s-wave*)

(defvar *g-wave*)

(defvar *array-size*)

(defvar *map-!oa1dd)
(defvar *map-array*)

(defvar *start-loc*)
(detvar *goaJ-loc*)

(defvar *parent-array*)

(seti *map size*)
(sett 'start-loc '(2 2))
(setf 'goal-loc* (10 10))

(detun parent-p(x y)

(aref *parent-array* x y))

(detun set-new-cost(x y cost)

(setf (aref 'cost-array* x y) cost))

(detun set-new-parentlx y parent-x parent-y)

(sett (aref *parent-array' x y) (list parent-x parent-y)))

(detun retneve--cost(x y)

(aref 'cost-array* x y))

(detun retrieve-parentlx y)

(aref *parent-array* x y)

Idetun get-cost-from-rnap(x y)

(aref *map-array' x y))

Idefun load-map (mapsize map-e map-n mapfile veh-map)

(setq input-stream (open mapfile direction input byte-size 8 characters nil))
(setf map-loc (-. (* (floor (I (- map-e 4 1000) 10001) 10)

(* (floor (/ (- map-n 60000) 1000)) 3500)))
(setf *array-size' (- mapsize 2))

(sett *map-array* veh-map)

(do (lycoord 0 (, ycoord 1))1
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(=ycoord 'array-size'))
(set? (aref *map-array' 0 ycoord) -2)
(set? (are? 'map-array* (- array-size* 1) ycoord) -2))

(do ((xcoord 0 (-s xcoord 1)))
(=xcoord *array-size*))

(set? (aref 'map-array* xcoord 0) -2)

(set? (aref *map-array* xcoord (- 'array-size' 1)) -2)

(do ((ycoord 1 (+ ycoord 1)))

((= y0004'd (- 'array-size* 1)))
(file-position input-stream map-loc)
(do ((xcoord 1 (+ xooord 1)))

((= xcoord (- *array-size* 1)))
(set? slope (read-byte input-stream))
(setf slope (+ (I(+ 0 0 slope) 2) 1))
(cond

((> slope 15) (set? slope -2)))
(sett (are? 'map-array* xcoord ycocrd) slope)

(set? map-loc (- map-Loc 350))

(close input-stream)

(set? mrap-icadedl yes)

toelun wa~etbirt-e s:art-n goal-e goal-n veh-rnapl

(cond ((equal 'map-loaded 'yes)

(set? 'start-10c' (list start-e start-n))
(serf 'goal-loc* (list goal-e goal-n)j

(set? 'map-array* veh-map)
(read- ter rain -data)

(in: Ual-ex pan d)

(norma:-expand)

(report- sclution)

no- rria p-available)))

(defun report-solition()

( end (reverse (follow-link (first *cnter-cell*) (second coenter-cell()
(odr (fullow-link (first 'center-cel) (th-ird *center-cell((()

(defun follow-link (postl pos2)

(cond ((equal pos' pos2)
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(list pos2))
(t
(cons posi

(follow-link
pos2
(retrieve-parent (first pos2)
(second pos2)))))))

(defun read-te rrain -data()
(let ((cost) (start-x) (start-y)

(goal-x) (goal-y))
(sef *parent-an-ay* (make-array (!ist *array-siz* *array-sizG*)'

(sett 'cost-array* (make-array (list *array-size* array-size*)))

(copy -array-con tents mrap-array* cost-array')
(setf start-x (first *start-loc'))

(sett start-y (second *start-Joc))
(setf goai-x (first *goal-loc*))

(setf goal-y (second *goal-loc*))

(set-new-parent start-x start-y start-x start-y)

(set-new-parent goal-s goal-y goal-s goal-y)
(set-new-cost start-s starl-y -1) .wave-name
(set-new-cost goal-s goal-y 0) ,wave-name

(print dcone-terrain-classification)

(detun initial-expand()

(do ()
((setf *s-wave* (init-expand -1 (liststr-c))

(do (
((setf 'g-wave* (init-expand 0 tlist *goal-loc*))))

(defun init-expand(wave-name wave)
retrun a-wave
(first (expand-8 (car wave) wave-name)))

(detun expand-8 (pos wave-name)
(let ((x (first pes))

(y (second pcsf)
(orthog expand (- x 1) y x y wave-name
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(orthog-expand (+ x 1) y x y wave-name
(orthog-expand x (+ y 1) x y wave-name
(orthog-expand x (- y 1) x y wave-name

(diag-expand (- x 1) (+. y 1) x y wave-name

(diag-expand (+ x 1) (+ y 1) x y wave-name
(diag-expand (+ x 1) (- y 1) x y wave-name

(diag-expand (. x 1) (- y 1) x y wave-name
(list nil 0 0)))))))))))

(detun normal-expand()
(do ()

((or (expand-s-wave)

(expand-g-wave))

(print 'wave-found))

(defun expand-s-wave()

(set-new-s-wave (cycle -th ru-wave *s-wvave* -1 n-1)))

(defun expand-g-wave()

(set-new-g-wave (cycle-tnru-wave 'g-wave' 0 nil);)

(detun set -new -s-wave (new-wave -data)

(sett 's-wave' (car new-wave-data))

(>= (second new-wave-data) 1))

(defun set-new -g -wave(new- wave -data)

(setf *g-wave* (car new-wave-data))

(>= (second new-wave-data) 1))

(detun cy cl e-thru -wave wave wave-name t-wave)

(cond ((null wave

(list t-wave 0 nil))

(t (let-

((pos (car wave))

(x (first pos))

(y (second pos))

(a-parent (retnieve-parent xy)

(dx (-x (first a-parent)))

(dy (-y (second a-parent)))

(wave-data (sub-expand dx dy x y wave-name t-wave))

(wave-data 1

(cycle-thru-waye (cdr wave) wave-name

(add-baci-to-wave pos wave-dlata))))

(list (first wave-data 1)
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(+- (second wave-datal) (second wave-data))
nil)))))

(defun add -back- to-wave (pos wave-data)
(it (>= (third wave-data) 3)

(first wave-data)

(cons pos (first wave-data))))

(defun sub-expand(dx dy x y wave-namie wave)
(cond ((equal dx 0)

(sub-expandl (+ y dy) x y wave-name wave))
((equal dy 0)
(sub-expand2 (+ x dx) x y wave-name wave))
(t
(sub-expand3 (, x dx) (. y dy) x y wave-name wave))))

(defun sub-expandi (ny x y wave-name wave)
(diag-expand (. x 1) fly x y wave-name

(orthog-expand x fly x y wave-name
(diag-expand (- x 1) ny x y wave-name (list wave 0 0)A,)))

(defun sub-expand2(nx x y wave-name wave)
(diag-expand nx (- y 1) x y wave-name

(orthog-expand nx y x y wave-name
(diag-expand nx (. y 1) x y wave-name (list wave 0 0~)

(defun sub-expano3,(nx ny x y wave-name wave)
(orthog-expand nx y x y wave-name

(diag-expand nx ny x y wave-name
(orthog-exparid x ny x y wave-name (list wave 0 0)))))

(defun orthog-exparid (x y px py wave-riarne wave-data)

(a-expand x y px py 1 4142 wave-name wave-data))

(defun diag-expand (x y px py wave-name wave-data)
(a-expand x y px py 1 wave-name wave-data))

(defun a-expand (x y px py amount wave-name wave-data)
(if (not (parent-p x y))

(set-new-parent x y px py))
(let ((cost (retrieve-oost x y)))

(cond
((and (equal cost -1)

(equal cost (olier-wave-p wave-namneo)
(self crenter-cellr
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(list (list x y)

(retrieve-parent x

(list px py)))

(list (first wave-data)

(+ (second wave-data) 1)

(+ (third wave-data) 1)))

((and (equal cost 0)

(equal cost (other-wave-p wave-name)))

(setf "center-cell*

(list (list x y)

(list px py)

(retrieve-parent x y)))

(list (first wave-data)

(+ (second wave-data) 1)

(+ (third wave-data) 1)))

((and (equal (retrieve-parent x y) (list px py)) (> cost 0))

(a-expand1 x y px py (- cost amount) wave-name wave-data))

(t

(list (first wave-data)

(second wave-data)

(+ (third wave-data) 1))')))

(defun a-expandl (x y px py new-cost wave-name wave-cata)

(cond ((> new-cost 0)

(set-new-cost x y new-cost)

wave-data)

(t

(my-overflow x y px py new-cost wave-name

(a-expand2 x y wave-name wave-data)))))

(defun a-expand2(x y wave-name wave-data)

(set-new-cost x y wave-namej

(list (cons (list x y) (first wave-data))

(second wave-data)

(+ (third wave-data) 1)))

(defun other-wave-p (wave-name)

(if (equal wave-name 0)

-1

0))

(defun my-overflow (x y px py cost wave-name wave-data)
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(cond ((< cost 0)
(let' ((nx (+ x (- x px)))

(ny (- y (- y py)))

(cost I (retrieve-cost nx ny))

(new-cost (+ cost cost)))

(if (not (parent-p nx ny))

(!et-new-parent nx ny x y))

(cond ((and (equal (rptrieve-parent nx ny) (list x y)) (> costl 0))

(cond ((> new-cost 0)

(set-new-cost nx ny new-cost)

wave-data)

(t

(set-new-cost nx ny wave-name)

(my-overflow

nx ny x y new-cost wave-name

(list (cons (list nx ny) (first wave-data))

(second wave-data)

(third wave-data))))))

(t

save-data))

(t

wave-data)))
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APPENDIX C USER INTERFACE

The user interface of any application program must be designed so that novice and

experienced users alike can effectively operate the program with little or no help from

user's manuals or other users. This is achieved by a thorough and efficient design of

command line options, popup menus, dials, and the use of the mouse. This appendix

provides instructions on starting up and running APS, both the vehicle simulator and

the path planner, and navigating through the menus and operating controls of the sys-

tem.

I. VEHICLE SIMULATOR 1

The section covers the user interface to the vehicle simulator by describing

starting procedures, the menu system, and platform controls.

A. COMMAND LINE OPCIONS 2

The vehicle simulator is started by typing "aps" followed by any command

line options and pressir g RETURN. There are currently three options available from

the command line.

" Network mode

" Test mode

" Silent mode

Selection of the network mode activates the networking capabilites of the

program. In this mode update messages are sent and received from any other vehicle

simulators as well as the path planner. Vehicle simulators operating on different

machines will be able to share information regarding the other platforms. When a

1The main modificainons to the MPS user interface ar in the driving controls, eapon s.stzm ontrols and aJddtional menu ,ptors

The entire user interface is documented here for completeness. Where the MPS interface is tmmodifier,, it is an extract of Appendix

A of [1.1CHTNSj
2

"The code " eses the command line arguments i contained in the file decoxdearguments c
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platform fires, changes guidance mode, or changes course, speed or altitude (FOGM

only), a message ib sent to all other vehicle simulators and to the AI agent updating

the local database for the appropriate platform.

Selection of test mode bypasses some of the cosmetic portions of the pro-

gram. Currently, the only part that is bypassed is the opening billboard sequence.

Selection of silent mode turns off the bell that rings to indicate acceptance

of input from the user. This option is useful for demonstrations when the ringing

would interfere with a verbal explanation of the program.

B. POPUP MENU SYSTEM 3

Popup menus are the primary, source of user control over the state of the

program. There are currently 24 different popup menus that are used in various parts

of the simulation. If a selection in a menu is not allowed or meaningful when the menu

is dispiayed, the selection is displayed in lower case. Otherwise the selection is com-

pletely uppercase. Invalid selections are retained in the menu so that ,he menus al-

ways appear in the same order and format every time. If disallowed selections were

omitted completely, users would tend to be overwhelmed by the number of different

menu formats.

A menu is displayed and the selection always made by depressing the

right mouse button. Roll-off menus are e-tanded by moving the cursor arrow to the

right when a menu item with a roll-off submenu (such selections have a small L-ro A

on the right-hand side) is highlighted. The following is a detailed explanation of each

menu.

3
The code for defining all stauc popup menus is conained in the qle makepopups c. Code for di~pla)ig at, procssing menu

selections is contained in the following fides: do man.c, dodnvng_menu.c, dojflyln&meux , do_change_ rred c, doinmros c,
do-paLhops.c, do quitng.c, do_select_area.c, dotheadd.c, dothed&fauiL~ c, dothedeleie c, d,, .he ;eicct c. and

select sight.c.
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1. Opening Menus

There ae two menus that make up the opening menu set. These

menus are called OPENINGONE and OPENINGTWO. Each of these menus con-

tain the same fou seiections as follows:

" DISPLAY INSTRUCTIONS

* GO TO SELECT AREA MENU
" EXIT THE PROGRAM
" ENTER 4SIGHT (RESIZE OPTIONS)

OPENINGONE allows the user to select any one of these options

but OPENINGTWO disallows the first option. OPENINGTWO is displayed if the

user is currently looking at the instruction page.

The first selection displays a page of instructions onthe user inter-

face. If the instruction page is being displayed or the user wishes to bypass the in-

struction paige, the GO TO SELECT AREA MENU selection will do just that. To exit

the program, the user must select EXIT TIlE PROGRAM and a small menu will be

displayed with the following selections:

• RETURN TO WHERE YOU WERE
• REALLY QUIT

If the user desires to resize or move the simulation's ,windovxs. the

option ENTER 4SIGHT (RESIZE OPTIONS) .ill allow him to accomplish it. After

selecti-g the option, the windows will be cleared to white and the user can click on

the menu bar and move or resize as desired using normal window manager functions.

2. Select Area Menu

The select area menu is active w, henevcr the 35 KM 2D map is dis-

played. It contains the "ollowing options:

• SELECT AN AREA OF THE M1AP
* GO TO MAIN MENU

* EXIT THE PROGRAM
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• ENTER 4SIGHT (RESIZE OPTIONS)

" COLOR SCHEME - BROWN RAMP

" COLOR SCHEME - MULTIPLE COLORS

* COLOR SCHEME - GREY RAMP

" COLOR SCHEME - RED RAMP

* COLOR SCHEME - GREEN RAMP

• COLOR SCHEME - BLUE RAMP

" GO TO INTRODUCTION SCREEN

Selecting GO TO MAIN MENU will take the user to the main menu

which is the next logical place to go after selecting a 10KM area in which to operate.

The color scheme selections change the way the terrain is colored.

Each color scheme has eight different colors that are based on the elevation at that lo-

cation. The simulation actually uses 16 colors to create a checkerboarding effect. how-

ever the user is only shown the eight primary colors in the color ramp.

The last selection allows a user to return to the introduction screens

if he desires.

3. Main Menu

The main menu contains the following ten selections:

" PLACE DEFAULT SET OF PLATFORMS

" ADD A PLATFORN:

" DELETE A PLATFORM

* SAVE PLATFORMS TO A FILE

* SELECT A PLATFORM TO OPERATE

* ENTER 4SIGHT (RESIZE OPTIONS;

* SELECT ANOTHER AREA OF THE MAP

" PERFORM PATH OPERATIONS

* OBSTACLES ON/OFF

* EXIT THE PROGRAM
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Selecting the first option (PLACE DEFAULT SET OF PLAT-

FORMS) will display another menu called DEFAULTMENU. This menu contains 6

selections as follows:

" ENTER THE FILENAME FOR YOUR PLATFORMS
" CONVOY - 10 GROUND PLATFORMS

• CONVOY - 10 GROUND & ! FOGM PLATFORM

" JEEPS -20 IN A ROW
" DR. ZYDA'S CONVOY
" DR. ZYDA'S WiLDMAN DEFAULTS

if the user selects the first option, a small window is displayed on the

screen wkhich prompts the user for the filename. If valid information is found in the file.

the appropriate platforms are added to the sirrulation. The main menu is then redis-

played.

Selection of any other option on the DEFAULTMENU results in the

add :ion of predesignated platforms in predesignated locations. These selections are

useful for demonstration purposes and for persons interested in getting some plat-

forms on the screen very quickly.

The information for the default sets of platforms ic contained in data

files that are read when indicated by a menu selection. The complete path for these

files is contained in the bcdder file "files.h".

The next option on the main menu is ADD A PLATFORM. Selecting

this option displays 'he following menu:

* AD,) A CC,VERED JEEP
• ADD AN OPEN JEEP
" ADD t TRUCK

* ADD A TANK

• ADD A TOW VEHICLE

* ADD A FOGM MISSILE
* ADD AN ATTACK HELICOPTER

• ADD AN OBSTACLE
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If a moving platform is selected (jeep, truck, tank, TOW, attack heli-

copter, or FOGM), menus are displayed requesting an initial speed and direction for

the platform. If an obstacle is requested, then the speed and direction menus are by-

passed. The FOGM missile defaults to an initial altitude of 50 meters above the ter-

rain at the point where it is placed. After completing the selections, an icon is placed

in the center of the screen that resembles the selected platform or obstacle. The user

can then move the icon with the mouse and place the platform by clicking the right

mouse button. After placing the icon on the screen, the main menu is displayed once

again.

Selecting the DELETE A PLATFORM option displays the follow~ing

menu:

• DELETE A SINGLE PLATFORM

• DELETE ALL PLATFORMS ON THE SCREEN

If the user wants to celete one platform. an X cursor is displayed and

the user can click on the desired platform. If the user wants to delete all the platforms

on the screen, the following menu is displayed:

° NO, DO NOT DELETE ALL THE PLATFORMS

" YES, DELETE ALL PLATFORMS

The appropriate selection from this menu either cancels the operation

or executes it. This menu prevents a user from deleting vehicles that he may not real-

ly want to delete.

If the user has placed platforms on the screen and wishes to save

them to a file, then the main menu selection SAVE PLATFORMS TO A FILE ac,:om-

plishes this. A window opens that prompts the user for the filename. If the path is cor-

rect, the platforms are saved to the file.
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The next selection from the main menu is SELECT A PLATFORM

TO OPERATE. If the user selects this option, the following menu is displayed:

* ZOOM IN TO ANY LEGAL GRID SQUARE

• SELECT A PLATFORM TO OPERATE RIGHT NOW

The zoom option is usually necessary if platforms are close to each

other and the individual icons overlap. By zooming into the lxi kilometer grid square,

the user can more easily select the platform he desires. If the platform the user

wants to operate is clearly visible, then the second selection allows the user to select

a platform immediately.

The SELECT ANOTHER AREA OF THE MAP option returns to

the SELECTAREA menu and redisplays the 35KM map.

Selecting PERFORM PATH OPERATIONS from the main menu dis

plays a submenu containing up to four path manipulation functions. These funct.ons

are:

* DISPLAY PATHS ON/OFF
* CONSTRUCT PATH
• DELETE PATH

. ASSIGN VEHICLE TO PATH

The last two options are not displayed if there are no paths to delete

or no vehicles to assign to a path. The first selection is a toggle that turns the display

of paths on the 10KM map on and off. The other selections allow manipulation of

paths. When a function is invoked by selecting it, specific instructions are displayed

in the lower right menu window.

4. Operating Menus

Operating menus are available when a platform has been selected

and is being driven by the user. They generally affect the charactenistics of the 3D

terrain display or how the vehicle is being controlled.
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a. Driving Menu. This menu is called OPERATEDRIVE. It

contains ten selections:

* DO NOTHING

* RETURN TO MALN MENU

* CHANGE ALL PLATFORMS' SPEEDS

* EXIT THE PROGRAM

• ENTER 4SIGHT (RESIZE OPTIONS)

• POP WINDOWS

• CHANGE VIEW

• ADVANCED OPTIONS

• AUTOPILOT ON/OFF

* GUIDANCE ON/OFF

The first selection is provided in case the user pushes the right

mouse button and he does not desire to do anything. The second selection returns the

user to the main menu.

The third selection causes another menu to pop up that allows the us-

er to select a speed for all the platforms currently in the simulation. The allowable

speeds are from zero to 65 miles per hour. There is also a selection that will do noth-

ing and return directly to the simulation. Changing all the speeds is convenient when

the user wants to have a convoy of platforms proceed at identical speeds. Also, by se-

lecting zero miles per hour, all platforms are effectively frozen and their configuration

can be studied by view ing them from a FOGM missile or other platform'.

The POP WINDOWS selection brings the four windows of the simu-

lation into view if any of them are obscured from view by other processes that are run-

ning on the machine.

If the CHANGE VIEW option is selected, a submenu containing dif-

ferent operating modes is presented. All platforms have at Icast three options:

* NORMAL VIEW - Normal commander's view, all dials including course and
speed are active.
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* DRIVER'S STATION - Activates mouse joystick (Figure C-I). for driving the
platform. In this mode moving the mouse move the steering cursor which
controls the steering and throttle. The corresponding course and speed di-
als are deactivated.

0 BINOCULARS - Gives view through a pair of variable power binoculars.

An additional selection is presented for each weapon system type

and munition combination carried by the platform, i.e., for a TOW vehicle a TOW se-

lection is displayed along with the normal three views.

The ADVANCED OPTIONS selection brings up the following mcr'u:

" TOGGLE SINGLE/DOUBLE BUFFER MODE

* TARGETING MODE TEST (ONCE)

" TERRAIN DRAWING OPTIONS

The first selection toggles the graphics hardware between single-

buffer and doublebuffer modes. In doublebuffer mode, all drawing is done in a separate

area of memory from the display memory, When the function swapbufiers() is called,

the pointer to this area and the pointer to the display buffer are switched. thereby

swapping the new picture for the old picture. This is how smocth motion is simulated.

If a user is interested in what order the individual picture elements are drawAn on the

screen, then by selecting singlebuffer mode. he can see the pictures while they are be-

ing drawn.

ACCELERATE

TLRN LEFT TURN RIGHT

BRAKE

Figure C-I Mouse Steering Cursor
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Targeting mode test allows a user to see how the simulation deter-

mines if a target is in the crosshairs of the FOGM missile during targeting. After se-

lecting the option, the next time targeting is attempted, the view will be cleared to

white and all visible platforms will be drawn without lighting, shading, or hidden sur-

face removal. The resulting picture is displayed for three seconds and then normal op-

eration commences. This option is reset each time it is used.

The TERRAIN DRAWING OPTIONS option is a roll-off menu.

When the user moves the cursor towards the right side of the words TERRATN

DRAWING OPTIONS, the following menu is displayed:

" DETAILEL zRRAIN

• DISTANCE ATTENUATION - NORMAL

• DISTANCE ATTENUATION - BOUNDARIES DISPLAYED

The default terrain drawing option is DISTANCE ATTENUATION -

NORMAL. This drawing option establishes three zones in front of the driven platform

and reduces the number of polygons that are displayed in each zone. The zone closest

to the viewer is displayed with lO0xI00 meter polygons, the greatest reolution avail-

able. The next zone uses 200x200 meter polygons and the last zone uses 400x400

meter polygons. The selection DISTANCE ATTENUATION - BOUNDARIES DIS-

PLAYED draws the boundaries between zones in cyan so the user can see \, here

they are. The selection for DETAILED TERRAIN draws OOxlO0 meter polygons

throughout the three zones. Users notice a significant decrea-, in the frames per sec-

ond rate when this option is selected. If singlebuffer mode is also enabled during de-

tailed terrain drawing, the algorithm that is used to draw the terrain becomes more

obvious.

The GUIDANCE ON/OFF toggles the gidance mode of the current-

ly selected platform. It invokes the actions described in paragraph C of chapter three.

A indicator light in the upper right window is also toggled to reflect the current guid-

ance mode.
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The AUTOPILOT ON/OFF option works much the same. It toggles

the platform's autopilot and its indicator light on and off.

b. Flying. There are three menus that make up the flying menu

set. These menus are called OPERATEFLYONE, OPERATEFLY§IWO, and

OPERATEFLY _THREE. This menu contains the seven selections as follows:

" DO NOTHING

* DETACH/RESUME OPERATING

• RETURN TO MAIN MENU

" CHANGE ALL PLATFORMS' SPEEDS

" EXIT THE PROGRAM

" ENTER 4SIGHT (RESIZE OPTIONS)

• TOGGLE TARGET TRACKING

" ADVANCED OPTIONS

Many of these options are exact duplicates of the options on the driv-

ing menu. However, the DETACI-L/RESUME OPERATING and TOGGLE TARGET

TRACKING options are different.

The DETACH/RESUME OPERATING option allows a user to de-

tach the cursor from the simulation while flying. During fiving, the cursor is restricted

to the simulation window because the mouse controls where the nose camera of the

FOGM missile is pointed. Using this option. the user can point the camera Nhere he

wants to look and then free the mouse. To return to the simulation. the user must se-

lect the same option once again.

If the user has a ground platform in the crosshairs of the FOGM mis

sile and he wants to target it, he must make the TOGGLE TARGET TRACKING se-

lection from the menu. If a platform was in the crosshairs, then the missile will lock on

and track the platform. If the user wants to release the missile from tracking mode

then another selection will turn off target tracking.
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C. DIALS 4

The dial box that is supplied by SGI has eight dials numbered from zero to

seven. They are organized in two columns and four rows. The numbering scheme is

from left to right, bottom to top so the lower left dial is zero, the lower right is one and

the upper right is seven.

The Autonomous Platform Simulator uses these dials in basically three

configurations; one for driving a platfonn that has no weapon system, a second for

driving a weapon equipped platform and a third for flying the FOGM. When the vehi-

cle i being driven using the mouse joystick, the course and speed dials are inactive.

When looking through the weapon sight _f a platform dials one and three affect the az-

imuth and elevation respectfully of the weapon system. When in normal view mode

dials six and seven perform this function and the weapon is controlled independently

of , hicle course or viewing angle.

1. Driving Dial Configuration

The dials for driving (Figure C-2) are configured as follows:

* DIAL 0 - Course

• DIAL 1 - Viewing direction or weapon azimuth if a sight is active

* DIAL 2 - Speed

* DIAL 3 - Viewing elevation or weapon elevation if a sight is active

• DIAL 4 - Hour of the day

* DIAL 5 - Month of the year

* DIAL 6 - Traverse weapon system when not looking through sight

* DIAL 7 - Elevate weapon system when not looking through sight

The course is the direction of travel of the platform which is displayed

in degrees. The viewing direction is the direction the driver's head is looking left to

right in relation to the course. When the course is changed, the viewing angle changes

accordingly. Speed is the speed of the platform in miles per hour. View elevation

4 The coxe for initializing the dials is contained in the follosk,,mg files. sctcontrols.c and setcontrols fogm c Code for handlIng Input

from the diais' movemanis is contained in the follosng files hc.ndlecontris c. handlecontrolsfogrn c. and handlc~otrlls partial C
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moves the diver's view up and down. The hour of the day and month of the year de-

termine the location, color, and intensity of the sun. Figure C-2 is a picture of the dial

box with the dials labeled for driving.

2. Flying Dial Configuration

The dials for flying are configured as follows:

" DIAL 0 - Course

" DIAL 1 - Altitude

" DIAL 2 -Speed
" DIAL 3 -NotUsed

* DIAL 4 - Hour of the Day

* DIAL 5 - Month of the Year

*DIAL 6- Not Used

* DIAL 7 - Not Used

Mlainv of the dials are identic'-al to the drivina dial configuration exc:ept for al-

itude w.hich is self- explanatiory. Figure C-3 is a picture of the dial box \kth th dials

labeled for flying.

D. Mouse 5

The mnouse has many uses throughout the simulation. Its use :an be bhro-

ken down into basically six groups:

*Popup mienu activation and selection

*Operating area selection
* Platform icon placement and selection

* FOGM missile nose camera con trol

*Mouse Joystick diving control

* Weapon rangefinder and Firing controls

5 cxie for handling the operations of the selections is contained in the file selectarr.a_menu c. Codie for handling pladform icon

placemient is contained in the tiles do-the-add c and addveh~c. Code for dnving using the mouse w~ a jovsik is contained in
sezup for Jning iud.,e for hanEing I-OGM missl~e nose cajncra contiL is .,nwncd In Lh- filC' inc~s~- n
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When operating a platform using the dials or mouse joystick the left and

middle mouse buttons control the magnification of the view by zooming OUT or IN re-

spectively as shown in Figure C-4. When looking through the sight of a weapon sys-

tem the left and middle mouse buttons function as a rangerfinder and trigger. This

arrangement is shown in Figure C-5.

The mouse is used throughout the simulation to activate popup menus and to se-

lect options. One of these options is to select an area from the large database. A

lOxlO kilometer red square is displayed on the 35x35 kilometer database and the

mouse is used to move the square to the desired location. Platforms are placed and

selected on the screen with the mouse.

The nose camera of the FOGM missile is controlled with the movement of the

mouse. This gives ihe user very fine control over targeting and viewing direction.

E. KeN board6

The keyboard is only used to accept filenames from tile uCIl. All other user

input is through ti,, popup menus, dials, or mouse.

6 ,,e ,,r handing flenx e iflUt w it~ ned the tile, g-n name ( and d, h1r .
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II. PATH PLANNER

The path planner portion of APS is not a stand alone process, it requires the ve-

hicle simulator to be running. This section covers how to run the path planner portion

of the vehicle simulator by describing starting and stopping procedures.

A. INITIAL REQUIREMENTS

The path planner requires that seven files be loaded across two Symbolics

workstations. The following files are required on SYM4, where ART resides.

* pp-control.art

" irisflavor3.lisp

• chaosflavor.lisp

" comm-functions.lisp

" clock-functions.lisp

" def-interface.lisp

The above files do not have to be loaded to begin with, but must be available for file

access. The following files are required on another Symbolics workstation.

Sbig-slope.bin

• search-control.lisp

* chaosflavor.lisp

• comm-functions.lisp

* lr-wave.lisp

B. START PROCEDURES

The path planner requires several preconditions to run properly. Since the

path planner is not a stand alone program, APS must be brought up first in network

mode. The path planner may be started anytime after APS has passed the initial

screen display. Starting the path planner is divided into two sections. These sections

are starting the path planner control program, and starting the search control program.
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1. Starting the Path Planner Control Program

On SYM4, enter ART by typing the SELECT: button. then typing A.

Load pp-control.art in the ART shell. Reset ART by clicking the left mouse button on

reset. Left mouse click on run. The program will query the user as to which Symbolics

workstation the search algorithm is loaded. After ensuring that the search control pro-

gram is started on the other Symbolics workstation, select the appropriate letter. The

program will then query the user as to which IRIS graphics workstation the vehicle

simulation is running on. After ensuring that the simulation is already running in the

network mode, select the appropriate letter from the menu. The path planner is now

running on its own and needs no further user interaction.

2. Starting the Search Control Program

The search control program is loaded onto any Svmbolics worksta-

tion. (ther than SYM4 where the path planner control program is loaded. To start the

search program. load search-control.lisp. Then in the LISP listener enter (start-
search-contol). The program \',.l respond by loading al of its c1-mnnun:caton, and

search files, then initiate a wait for communications from the path planner control pro-

gram on SYM4. No further user ineraction is required.

C. STOPPING THE PATH PLANNER

When the user is finished with the path planner, it is halted by using !he

META. CONTROL. and ABORT keys simultaneously. Next, on SYN14. the user en-

ters the dynamic LISP listener and sets the user package to ACU (ART Common Us-

er), and clears the communications paths by entering the following:

• (scl:send talk-i :stop-iris)
* (scl:send talk-s :stop)

The search control program is halted in an identical manner as the path planner

control program, but there is no need to enter a special LISP package to clear the com-

munications path. The communications path for the search control program is cleared

by entering (send talk-s :stop).
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APPENDIX D KNOWN BUGS and SUGGESTED CODE IMPROV'EMENTS

1. The timer is currently reset when a vehicle is selected/reselected to operate

from the main menu. This causes errors in timed events on the event list such as

rounds in flight, safety reset, etc..
2. The Cobra attack helicopter is controlled the same as a round vehicle.

3. Guidance for LOS guided weapons, specifically the TOW, uses the current

weapon azimuth and elevation, not the parameters at the moment of firing like a bal-

listic round. This is correct but still fails to move the round onto the LOS at the

crossbairs of the sight reticle. In checkroundInflight0, the round should be moved
to its new updated position by moving towards the current point of aim ' hie beiIIL

kept within the turning limits of the missile control system.

4. A separate eye position should be added to provide additional \iewpoints on

each vehicle. Each vehicle should have , eye position for: normal view (TCL. driver's

view, and wea-on view. This should be accomplished by adding the follo.,ing dat1

structure:

#define TCFOSIT:ON 0
#define DRIVERPOSITION 1
#define WEAPONPOSITION 2

float eyepositlon[vehtype][viewposition][x,y,z]

5. The 70GM controls no longer work correctly. The pan direction is reversed

a,-- ti>e course is E-xed a- 90 dcgrees.

6. The network(SENDENDMESSAGE) function causes remote simulators to

crash. Since net ids are now unique, the range of ids can no longer be calculated.

Therefore, the terminating simulator must send a delete message for each of its local

platforms when terminating.

7. In some cases, the autopilot will cause a platform to endlessly orbit the

goal. Normally a platform approaches a guide point head-on and stops or turns. If
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the vehicle i ourticre :hc stonping distance and facing away from the goal when the

autopilot is engaged, then the vehicle can get into a situation 'Ahere it passes by the

guide point before it completes its turn to head for it. This results in a circular path

around the guide point. Thir, should be taken care of when the autopilot is made more

accurate to handle obstacle avoidance.

8. The display limiting algorithm in drawterrain doesn't work properly for the

extremely narrow field-of-view used for the 13X TOW sight. At certain angles not

enough terrain is drawn so some blue sky background shows through.

9. Calculating surface normals for 10 squares across and up requires 101 ele-

vation data points. The 101st elevation doesn't exist. resulting in bad nonnals along

the top row and right column. This was fixed temporarily by extenlr,, The lO(1th Cle-

vation out to also be the 101st elevation which creates a light band of terrain in these

border areas. The algorithm should be changed to eiher get the lOst elevation or

extrapolate it based on 99th and 100th elevations.

10. All matching of platform ids is done by linear search through the platform

list. This is not a problem with only a handf of vehicles, but would cause serous de-

lays for a more realistic number of platforms. This should be replaced by a hash table

using platform id.
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